第7章 支持向量機 支持向量機(support vector machines, SVM)是一種二類分類模型。它的基本模型是定義在特征空間上的間隔最大的線性分類器;支持向量機還包括核技巧,這使它成為實質上的非線性分類器。支持向量機的學習策略就是間隔最大化,可形式化為一個求解凸二次規划 ...
支持向量機 supportvectormachines,SVM 是一種二類分類模型.它的基本模型是定義在特征空間上的間隔最大的線性分類器,間隔最大使它有別於感知機 支持向量機還包括核技巧,這使它成為實質上的非線性分類器.支持向量機的學習策略就是間隔最大化,可形式化為一個求解凸二次規划 convex quadratic也等價於正則化的合頁損失函數的最小化問題.支持向programming 的 問題 ...
2017-10-13 21:23 0 2068 推薦指數:
第7章 支持向量機 支持向量機(support vector machines, SVM)是一種二類分類模型。它的基本模型是定義在特征空間上的間隔最大的線性分類器;支持向量機還包括核技巧,這使它成為實質上的非線性分類器。支持向量機的學習策略就是間隔最大化,可形式化為一個求解凸二次規划 ...
簡述 支持向量機 :是一種二分類模型,它的基本模型是定義在特征空間上的間隔最大的線性分類器,間隔最大使它有別於感知機。 核技巧:SVM還包括核技巧,這使它成為實質上的非線性分類器。 間隔最大化:SVM的學習策略是間隔最大化,可形式化為一個求解凸二次規划的問題,也等價於正則化的合頁損失函數 ...
提升(boosting) 方法是一種常用的統計學習方法,應用廣泛且有效.在分類問題中,它通過改變訓練樣本的權重,學習多個分類器,並將這些分類器進行線性組合,提高分類的性能.本章首先介紹提升方法的思路和代表性的提升算法AdaBoost; 然后通過訓練誤差分析探討AdaBoost ...
隱馬爾可夫模型(hidden Markov model,HMM) 是可用於標注問題的統計學習模型,描述由隱藏的馬爾可夫鏈隨機生成觀測序列的過程,屬於生成模型.本章首先介紹隱馬爾可夫模型的基本概念,然后分別敘述隱馬爾可夫模型的概率計隱馬爾可夫模型在語音識別、自然語言處理、算算法、學習 ...
第一章 統計學習方法概論 統計學習的主要特點是: (1)統計學習以計算機及網絡為平台,是建立在計 算機及網絡之上的; (2)統計學習以數據為研究對象,是數據驅動的學科; (3)統 ...
第12章 統計學習方法總結 1 適用問題 分類問題是從實例的特征向量到類標記的預測問題; 標注問題 是從觀測序列到標記序列(或狀態序列)的預測問題。可以認為分類問題是標注 問題的特殊情況。 分類問題中可能的預測結果是二類或多類; 而標注問題 ...
提升方法 簡述:提升方法(boosting)是一種常用的統計學習方法,應用廣泛且有效。在分類問題中,它通過改變訓練樣本的權重,學習多個分類器,並將這些分類器進行線性組合,提高分類的性能。 本章 (1)介紹boosting方法的思路和代表性的boosting算法AdaBoost (2)通過訓練 ...
第11章 條件隨機場 條件隨機場(conditional random field, CRF)是給定一組輸入隨機變量條件下 另一組輸出隨機變量的條件概率分布模型,其特點是假設輸出隨機變量構成馬爾 可夫隨機場。條件隨機場可以用於不同的預測問題,本章 主要講述線性鏈(linear ...