原文:2.2 logistic回歸損失函數(非常重要,深入理解)

上一節當中,為了能夠訓練logistic回歸模型的參數w和b,需要定義一個成本函數 使用logistic回歸訓練的成本函數 為了讓模型通過學習來調整參數,要給出一個含有m和訓練樣本的訓練集 很自然的,希望通過訓練集找到參數w和b,來得到自己得輸出 對訓練集當中的值進行預測,將他寫成y I 我們希望他會接近於訓練集當中的y i 的數值 現在來看一下損失函數或者叫做誤差函數 他們可以用來衡量算法的運 ...

2017-09-08 22:12 0 11888 推薦指數:

查看詳情

logistic回歸損失函數非常重要深入理解

2.2 logistic回歸損失函數非常重要深入理解) 上一節當中,為了能夠訓練logistic回歸模型的參數w和b,需要定義一個成本函數 使用logistic回歸訓練的成本函數 為了讓模型通過學習 ...

Tue Feb 04 06:20:00 CST 2020 0 808
Logistic Regression(邏輯回歸)中的損失函數理解

問題:線性回歸中,當我們有m個樣本的時候,我們用的是損失函數是但是,到了邏輯回歸中,損失函數一下子變成那么,邏輯回歸損失函數為什么是這個呢? 本文目錄 1. 前置數學知識:最大似然估計 1.1 似然函數 1.2 最大似然估計 2. 邏輯回歸損失函數理解 ...

Wed Aug 18 01:13:00 CST 2021 0 291
邏輯斯蒂(logistic回歸深入理解、闡述與實現

第一節中說了,logistic 回歸和線性回歸的區別是:線性回歸是根據樣本X各個維度的Xi的線性疊加(線性疊加的權重系數wi就是模型的參數)來得到預測值的Y,然后最小化所有的樣本預測值Y與真實值y'的誤差來求得模型參數。我們看到這里的模型的值Y是樣本X各個維度的Xi的線性疊加,是線性的。 Y ...

Thu Dec 18 01:33:00 CST 2014 1 45203
交叉熵損失函數的求導(Logistic回歸)

前言 最近有遇到些同學找我討論sigmoid訓練多標簽或者用在目標檢測中的問題,我想寫一些他們的東西,想到以前的博客里躺着這篇文章(2015年讀研時機器學課的作業)感覺雖然不夠嚴謹,但是很多地方還算直觀,就先把它放過來吧。 說明: 本文只討論Logistic回歸的交叉熵,對Softmax回歸 ...

Thu Aug 05 19:01:00 CST 2021 2 170
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM