原文:決策樹中的J48算法分析

J 原理:本來名稱為C . ,由於是Java實現的算法,再加上C . 為商業收費算法。 其實J 是自上而下的,遞歸的分治策略,選擇某個屬性放置在根節點,為每個可能的屬性值產生一個分支,將實例分成多個子集,每個子集對應一個根節點的分支,然后在每個分支上遞歸地重復這個過程。當所有實例有相同的分類時,停止。 問題是如何:如惡化選擇根節點屬性,建立分支呢 例如:weather.nominal.arff 我 ...

2017-07-25 17:24 1 4020 推薦指數:

查看詳情

決策樹J48算法

1、J48原理   基於從上到下的策略,遞歸的分治策略,選擇某個屬性放置在根節點,為每個可能的屬性值產生一個分支,將實例分成多個子集,每個子集對應一個根節點的分支,然后在每個分支上遞歸地重復這個過程。當所有實例有相同的分類時,停止。   問題:如何選擇根節點屬性,建立分支 ...

Sat May 23 20:45:00 CST 2015 0 11253
決策樹算法

算法思想 決策樹(decision tree)是一個樹結構(可以是二叉樹或非二叉樹)。 其每個非葉節點表示一個特征屬性上的測試,每個分支代表這個特征屬性在某個值域上的輸出,而每個葉節點存放一個類別。 使用決策樹進行決策的過程就是從根節點開始,測試待分類項相應的特征屬性,並按照其值選擇輸出 ...

Tue Jul 10 00:38:00 CST 2018 0 12904
決策樹算法

利用ID3算法來判斷某天是否適合打網球。 (1)類別屬性信息熵的計算由於未分區前,訓練數據集中共有14個實例, 其中有9個實例屬於yes類(適合打網球的),5個實例屬於no類(不適合打網球), 因此分區前類別屬性的熵為: (2)非類別屬性信息熵 ...

Sun Apr 23 07:04:00 CST 2017 0 5437
決策樹算法

###決策樹基礎概念 在機器學習決策樹是一個預測模型,他代表的是對象屬性與對象值之間的一種映射關系。Entropy (熵) 表示的是系統的凌亂程度,它是決策樹決策依據,熵的概念來源於香儂的信息論。 ###決策樹決策過程 選擇分裂特征:根據某一指標(信息增益,信息增益比或基尼 ...

Sun Jan 15 22:49:00 CST 2017 0 7039
決策樹算法

1. 決策樹算法 1.1 背景知識 信息量\(I(X)\):指一個樣本/事件所蘊含的信息,如果一個事情的概率越大,那么就認為該事件所蘊含的信息越少,確定事件不攜帶任何信息量 \(I(X)=-log(p(x))\) 信息熵\(H(X)\):用來描述系統信息量 ...

Thu Jul 18 06:42:00 CST 2019 0 414
決策樹算法

Infi-chu: http://www.cnblogs.com/Infi-chu/ 一、簡介 決策樹思想的來源非常朴素,程序設計的條件分支結構就是if-else結構,最早的決策樹就是利用這類結構分割數據的一種分類學習方法 1.定義: 決策樹是一種樹形結構,其中每個內部節點表示一個 ...

Fri Aug 30 23:30:00 CST 2019 0 609
決策樹算法

決策樹算法是一種通用的機器學習算法,既可以執行分類也可以執行回歸任務,同時也是一種可以擬合復雜數據集的功能強大的算法; 一、可視化決策樹模型 通過以下代碼,我們使用iris數據集構建一個決策樹模型,我們使用數據的后兩個維度並設置決策樹的最大深度為2,最后通過export ...

Mon Mar 07 16:36:00 CST 2022 0 812
Spark決策樹源碼分析

1.Example 使用Spark MLlib決策樹分類器API,訓練出一個決策樹模型,使用Python開發。 2.決策樹源碼分析 決策樹分類器API為DecisionTree.trainClassifier,進入源碼分析。 源碼文件所在路徑為,spark-1.6/mllib/src ...

Fri Sep 30 01:56:00 CST 2016 0 1658
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM