原文:利用朴素貝葉斯(Navie Bayes)進行垃圾郵件分類

貝葉斯公式描寫敘述的是一組條件概率之間相互轉化的關系。 在機器學習中。貝葉斯公式能夠應用在分類問題上。 這篇文章是基於自己的學習所整理。並利用一個垃圾郵件分類的樣例來加深對於理論的理解。 這里我們來解釋一下朴素這個詞的含義: 各個特征是相互獨立的,各個特征出現與其出現的順序無關 各個特征地位同等重要 以上都是比較強的如果 以下是朴素貝葉斯分類的流程: 這樣我們就分別求出了這些特征各個類別下的條件 ...

2017-07-08 19:22 0 2156 推薦指數:

查看詳情

朴素應用:垃圾郵件分類

朴素應用:垃圾郵件分類 1. 數據准備:收集數據與讀取 2. 數據預處理:處理數據 3. 訓練集與測試集:將先驗數據按一定比例進行拆分。 4. 提取數據特征,將文本解析為詞向量 。 5. 訓練模型:建立模型,用訓練數據訓練模型。即根據訓練樣本集,計算詞項出現的概率P(xi|y ...

Thu Dec 06 18:27:00 CST 2018 0 695
朴素-垃圾郵件分類實現

1. 前言 《朴素算法(Naive Bayes)》,介紹了朴素原理。本文介紹的是朴素的基礎實現,用來垃圾郵件分類。 2. 朴素斯基礎實現 朴素 (naive Bayes) 法是基於貝葉斯定理與特征條件獨立假設的分類的方法。對於給定的訓練數據集,首先基於特征條件獨立 ...

Mon Jan 28 00:31:00 CST 2019 1 4548
秒懂機器學習---朴素進行垃圾郵件分類實戰

秒懂機器學習---朴素進行垃圾郵件分類實戰 一、總結 一句話總結: 沒必要一次學很多個算法,不然,其實真的一個也不懂,要一個一個搞懂了再往下學 如何講解這個問題:實例+人話:朴素( P(結果|關鍵詞1,關鍵詞2...) = P(關鍵詞1,關鍵詞2...|結果)*P(結果)/P ...

Thu Jun 06 12:34:00 CST 2019 0 484
機器學習實戰1:朴素模型:文本分類+垃圾郵件分類

  學習了那么多機器學習模型,一切都是為了實踐,動手自己寫寫這些模型的實現對自己很有幫助的,堅持,共勉。本文主要致力於總結實戰中程序代碼的實現(python)及朴素模型原理的總結。python的numpy包簡化了很多計算,另外本人推薦使用pandas做數據統計。 一 引言 ...

Tue Jun 21 06:19:00 CST 2016 6 21442
使用朴素過濾垃圾郵件

函數對垃圾郵件分類進行自動化處理。導入文件夾spam和ham下的文版文件,並將其解析為詞列表。 ...

Fri Sep 15 01:29:00 CST 2017 1 1823
Python之機器學習-朴素(垃圾郵件分類)

目錄 朴素(垃圾郵件分類) 郵箱訓練集下載地址 模塊導入 文本預處理 遍歷郵件 訓練模型 測試模型 朴素(垃圾郵件分類) 郵箱訓練集下載地址 郵箱訓練集可以加我微信 ...

Tue May 07 23:57:00 CST 2019 0 1877
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM