卷積神經網絡 深度神經網絡的重要性在於,它開啟了通向復雜非線性模型和對知識進行分層處理的系統方法的大門。人們開發了很多提取圖像特征的技術:SIFT、HoG、Textons、圖像旋轉、RIFT、GLOH等。卷積神經網絡的特點和優勢在於自動提取特征。 卷積層生成特征映射圖(feature ...
前言,好久不見,大家有沒有想我啊。哈哈。今天我們來隨便說說卷積神經網絡。 卷積神經網絡的優點 卷積神經網絡進行圖像分類是深度學習關於圖像處理的一個應用,卷積神經網絡的優點是能夠直接與圖像像素進行卷積,從圖像像素中提取圖像特征,這種處理方式更加接近人類大腦視覺系統的處理方式。另外,卷積神經網絡的權值共享屬性和pooling層使網絡需要訓練的參數大大減小,簡化了網絡模型,提高了訓練的效率。 卷積神經網 ...
2017-06-16 20:09 3 22192 推薦指數:
卷積神經網絡 深度神經網絡的重要性在於,它開啟了通向復雜非線性模型和對知識進行分層處理的系統方法的大門。人們開發了很多提取圖像特征的技術:SIFT、HoG、Textons、圖像旋轉、RIFT、GLOH等。卷積神經網絡的特點和優勢在於自動提取特征。 卷積層生成特征映射圖(feature ...
最近學習了卷積神經網絡,推薦一些比較好的學習資源 1: https://www.zybuluo.com/hanbingtao/note/485480 2: http://blog.csdn.net/u010540396/article/details/52895074 對於網址,我大部分學習 ...
以下實現參考吳恩達的作業。 一、 padding 從zero_pad的函數中,我們可以看出,我們只需要對原圖片矩陣進行padding操作,而m是圖片的個數,n_C則是channel的個數,這兩個維度並不需要我們做任何操作。 二、 卷積計算 卷積計算的過程中 ...
代碼來源:https://github.com/eriklindernoren/ML-From-Scratch 卷積神經網絡中卷積層Conv2D(帶stride、padding)的具體實現:https://www.cnblogs.com/xiximayou/p/12706576.html ...
結果: ...
1 卷積神經網絡簡介 在介紹卷積神經網絡(CNN)之前,我們需要了解全連接神經網絡與卷積神經網絡的區別,下面先看一下兩者的結構,如下所示: 圖1 全連接神經網絡與卷積神經網絡結構 雖然上圖中顯示的全連接神經網絡結構和卷積神經網絡的結構直觀上差異比較大,但實際上它們的整體架構 ...
卷積神經網絡 代碼:https://github.com/TimVerion/cat 卷積層 卷積層:通過在原始圖像上平移來提取特征,每一個特征就是一個特征映射 原理:基於人腦的圖片識別過程,我們可以認為圖像的空間聯系也是局部的像素聯系比較緊密,而較遠的像素相關性比較弱,所以每個 ...
原文地址:http://blog.csdn.net/hjimce/article/details/47323463 作者:hjimce 卷積神經網絡算法是n年前就有的算法,只是近年來因為深度學習相關算法為多層網絡的訓練提供了新方法,然后現在電腦的計算能力已非 ...