卷積神經網絡(CNN) 在前面我們講述了DNN的模型與前向反向傳播算法。而在DNN大類中,卷積神經網絡(Convolutional Neural Networks,以下簡稱CNN)是最為成功的DNN特例之一。CNN廣泛的應用於圖像識別,當然現在也應用於NLP等其他領域,本文我們就對CNN的模型 ...
近期一直在看卷積神經網絡,想改進改進弄出點新東西來。看了好多論文,寫了一篇綜述。對深度學習中卷積神經網絡有了一些新認識,和大家分享下。 事實上卷積神經網絡並非一項新興的算法。早在上世紀八十年代就已經被提出來,但當時硬件運算能力有限,所以當時僅僅用來識別支票上的手寫體數字,而且應用於實際。 年深度學習的泰斗在 科學 上發表一篇文章,論證了深度結構在特征提取問題上的潛在實力。從而掀起了深度結構研究的 ...
2017-05-12 21:28 1 3406 推薦指數:
卷積神經網絡(CNN) 在前面我們講述了DNN的模型與前向反向傳播算法。而在DNN大類中,卷積神經網絡(Convolutional Neural Networks,以下簡稱CNN)是最為成功的DNN特例之一。CNN廣泛的應用於圖像識別,當然現在也應用於NLP等其他領域,本文我們就對CNN的模型 ...
1. 卷積神經網絡結構介紹 卷積神經網絡 – CNN 最擅長的就是圖片的處理。它受到人類視覺神經系統的啟發。 CNN 有2大特點: 能夠有效的將大數據量的圖片降維成小數據量 能夠有效的保留圖片特征,符合圖片處理的原則 目前 CNN 已經得到了廣泛的應用,比如:人臉識別 ...
卷積神經網絡CNN 作者:凱魯嘎吉 - 博客園 http://www.cnblogs.com/kailugaji/ 卷積神經網絡(Convolutional Neural Network,CNN 或ConvNet)是一種具有局部連接、權重共享等特性的深層前饋神經網絡。卷積 ...
神經網絡,聽起來像是計算機科學、生物學和數學的詭異組合,但它們已經成為計算機視覺領域中最具影響力的革新的一 ...
卷積神經網絡介紹 卷積神經網絡是一種多層神經網絡,擅長處理圖像特別是大圖像的相關機器學習問題。 最典型的卷積網絡,由卷積層、池化層、全連接層組成。其中卷積層與池化層配合,組成多個卷積組,逐層提取特征,最終通過若干個全連接層完成分類。 卷積層完成的操作,可以認為是受局部感受野概念的啟發,而池化 ...
卷積神經網絡(CNN) 1.1二維卷積層 卷積神經網絡是含有卷積層的神經網絡,均使用最常見的二維卷積層,它有高和寬兩個空間維度,常用來處理圖像數據。 1.1.1二維互相關運算 在二維卷積層中,一個二維輸入數組和一個二維核數組通過互相關運算輸出一個二維數組 ...
from http://blog.jobbole.com/113819/?utm_source=blog.jobbole.com&utm_medium=relatedPosts 什么是卷積神經網絡,它為何重要? 卷積神經網絡(也稱作 ConvNets 或 CNN)是神經網絡 ...
卷積神經網絡的結構由輸入層、卷積神經層(Convolutional Layer)、下采樣層(Pooling Layer)、全連接層(Fully Connected Network)及輸出層構成[20]。其中卷積神經網絡層、下采樣層、全連接被合稱為隱含層。 在卷積 ...