原文:利用Tensorflow實現神經網絡模型

首先看一下神經網絡模型,一個比較簡單的兩層神經。 代碼如下: ...

2017-05-09 15:09 0 1979 推薦指數:

查看詳情

通過TensorFlow訓練神經網絡模型

神經網絡模型的訓練過程其實質上就是神經網絡參數的設置過程 在神經網絡優化算法中最常用的方法是反向傳播算法,下圖是反向傳播算法流程圖: 從上圖可知,反向傳播算法實現了一個迭代的過程,在每次迭代的開始,先需要選取一小部分訓練數據,這一小部分數據叫做一個batch。然后這一個batch會通過前 ...

Tue Mar 12 03:26:00 CST 2019 0 785
使用Tensorflow訓練神經網絡模型

最近正在入坑機器學習,前期以讀代碼為主。買了一本才雲科技鄭澤宇的書,叫做《Tensorflow,實戰Google深度學習框架》,覺得很適合入門的小菜鳥,拿出來跟大家分享下。 下面是第一個完整的訓練神經網絡模型的代碼,里面綜合了作者和我在網上查到的其他人關於代碼的解讀。整理之后如下: ...

Thu Dec 28 16:39:00 CST 2017 0 2338
常用的神經網絡模型和pytorch實現(一)

BasicModule 程序實現的時候所有模型繼承自定義的basicmoudle,主要重寫了模型加載和保存等方法 View Code Lenet5 這個是n多年前就有的一個CNN的經典結構,主要是用於手寫字體的識別,也是剛入門需要 ...

Wed Sep 02 20:06:00 CST 2020 0 1378
Pytorch實現神經網絡模型求解線性回歸

autograd 及Variable Autograd: 自動微分   autograd包是PyTorch中神經網絡的核心, 它可以為基於tensor的的所有操作提供自動微分的功能, 這是一個逐個運行的框架, 意味着反向傳播是根據你的代碼來運行的, 並且每一次的迭代運行都可能不 ...

Tue Sep 15 08:43:00 CST 2020 0 443
使用PyTorch簡單實現卷積神經網絡模型

  這里我們會用 Python 實現三個簡單的卷積神經網絡模型:LeNet 、AlexNet 、VGGNet,首先我們需要了解三大基礎數據集:MNIST 數據集、Cifar 數據集和 ImageNet 數據集 三大基礎數據集 MNIST 數據集   MNIST數據集是用作手寫體識別的數據集 ...

Wed Sep 18 00:26:00 CST 2019 0 728
經典深度卷積神經網絡模型原理與實現

卷積神經網絡(Convolutional Neural Network,CNN)最初是為解決圖像識別等問題設計的,在早期的圖像識別研究中,最大的挑戰是如何組織特征,因為圖像數據不像其他類型的數據那樣可以通過人工理解來提取特征。卷積神經網絡相比傳統的機器學習算法,無須手工提取特征,也不需要使用諸如 ...

Wed Feb 19 22:20:00 CST 2020 0 2890
神經網絡模型(Backbone)

  自己搭建神經網絡時,一般都采用已有的網絡模型,在其基礎上進行修改。從2012年的AlexNet出現,如今已經出現許多優秀的網絡模型,如下圖所示。 主要有三個發展方向:     Deeper:網絡層數更深,代表網絡VggNet     Module: 采用模塊化的網絡結構(Inception ...

Wed Oct 09 06:16:00 CST 2019 2 13053
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM