一、模型驗證方法如下: 通過交叉驗證得分:model_sleection.cross_val_score(estimator,X) 對每個輸入數據點產生交叉驗證估計:model_selection.cross_val_predict(estimator,X) 計算並繪制模型的學習率 ...
好記憶不如爛筆頭,之前西瓜書這章也看過幾次但還是掌握不夠,今天又拿來翻翻順便做個筆記 前面寫了幾篇線性回歸與邏輯回歸的文章,是說模型訓練的但是模型的性能怎樣該怎么選擇使用最小二乘法還是梯度下降法呢,我們總得要比較模型的性能再做選擇吧 所以就有了這里所說的模型評估與選擇 既然是讀書比較我們先看看書本里講了什么: 從五個方面講了模型的評估與選擇: 經驗誤差與過擬合 評估方法 性能度量 比較檢驗 偏差與 ...
2017-04-22 17:57 0 2407 推薦指數:
一、模型驗證方法如下: 通過交叉驗證得分:model_sleection.cross_val_score(estimator,X) 對每個輸入數據點產生交叉驗證估計:model_selection.cross_val_predict(estimator,X) 計算並繪制模型的學習率 ...
機器學習算法 原理、實現與實踐——模型評估與模型選擇 1. 訓練誤差與測試誤差 機器學習的目的是使學習到的模型不僅對已知數據而且對未知數據都能有很好的預測能力。 假設學習到的模型是$Y = \hat{f}(X)$,訓練誤差是模型$Y = \hat{f}(X)$關於訓練數據集的平均損失 ...
目錄 1、簡介 1.1 訓練誤差和測試誤差 1.2、過擬合與欠擬合 2、模型選擇 2.1、正則化 2.2、簡單交叉驗證 2.3、S折交叉驗證 2.4、自助方法 3、模型評估 ...
6. 學習模型的評估與選擇 Content 6. 學習模型的評估與選擇 6.1 如何調試學習算法 6.2 評估假設函數(Evaluating a hypothesis) 6.3 模型選擇與訓練/驗證/測試集(Model selection ...
1、損失函數和風險函數 (1)損失函數:常見的有 0-1損失函數 絕對損失函數 平方損失函數 對數損失函數 (2)風險函數:損失函數的期望 經驗風險:模型在數據集T上的平均損失 根據大數定律,當N趨向於∞時,經驗風險趨向於風險函數 2、模型評估方法 (1)訓練誤差 ...
【第2章 模型評估與選擇】 〖一、知識點歸納〗 一、經驗誤差與過擬合 【分類】:對是離散值的結果進行預測。 【回歸】:對是連續值的結果進行預測。 分類和回歸屬於監督學習。 【錯誤率】:分類錯誤的樣本數占樣本總數的比例。 eg:m個樣本中有 ...
線性回歸: 可以用損失函數來評估模型,這個損失函數可以選擇平方損失函數, 將所有樣本的x和y代入, 只要損失函數最小,那么得到的參數就是模型參數 邏輯回歸: 可以使用似然概率來評估模型,將所有樣本的x和y代入, 只要這個似然概率最大,那么得到的參數,就是模型參數 常見的損失函數 機器學習 ...
一、模型的評估方法 (1)留出法:顧名思義,就是留出一部分作為測試樣本。將已知的數據集分成兩個互斥的部分,其中一部分用來訓練模型,另一部分用來測試模型,評估其誤差,作為泛化誤差的估計。 注意:(1) 兩個數據集的划分要盡可能保持數據分布的一致性,避免因數據划分過程引入人為的偏差 ...