原文:譜聚類(Spectral clustering)(1):RatioCut

作者:桂。 時間: : : 鏈接:http: www.cnblogs.com xingshansi p .html 聲明:本文大部分內容來自:劉建平Pinard博客的內容。 前言 之前對非負矩陣分解 NMF 簡單梳理了一下,總覺得NMF與聚類非常相似,像是譜聚類的思想。在此將譜聚類的知識梳理一下,內容無法轉載,不然直接轉載劉建平Pinard的博文了,常用的譜聚類有RatioCut和Ncut算法,全 ...

2017-04-13 20:44 1 3728 推薦指數:

查看詳情

聚類(spectral clustering)

1. 聚類 給你博客園上若干個博客,讓你將它們分成K類,你會怎樣做?想必有很多方法,本文要介紹的是其中的一種——聚類聚類的直觀解釋是根據樣本間相似度,將它們分成不同組。聚類的思想是將樣本看作頂點,樣本間的相似度看作帶權的邊,從而將聚類問題轉為圖分割問題:找到一種圖 ...

Thu Jun 21 19:04:00 CST 2012 4 46728
聚類算法(Spectral Clustering)

聚類(Spectral Clustering, SC)是一種基於圖論的聚類方法——將帶權無向圖划分為兩個或兩個以上的最優子圖,使子圖內部盡量相似,而子圖間距離盡量距離較遠,以達到常見的聚類的目的。其中的最優是指最優目標函數不同,可以是割邊最小分割——如圖1的Smallest cut ...

Wed Jun 26 08:02:00 CST 2013 12 27320
聚類算法(Spectral Clustering)

聚類(Spectral Clustering, SC)是一種基於圖論的聚類方法——將帶權無向圖划分為兩個或兩個以上的最優子圖,使子圖內部盡量相似,而子圖間距離盡量距離較遠,以達到常見的聚類的目的。其中的最優是指最優目標函數不同,可以是割邊最小分割——如圖1的Smallest cut(如后 ...

Wed Jun 17 03:52:00 CST 2015 0 2749
聚類(Spectral Clustering)詳解

聚類(Spectral Clustering)詳解 聚類(Spectral Clustering, SC)是一種基於圖論的聚類方法——將帶權無向圖划分為兩個或兩個以上的最優子圖,使子圖內部盡量相似,而子圖間距離盡量距離較遠,以達到常見的聚類的目的。其中的最優是指最優目標函數 ...

Wed Jun 26 17:57:00 CST 2013 4 39221
聚類Spectral clustering)(2):NCut

作者:桂。 時間:2017-04-13 21:19:41 鏈接:http://www.cnblogs.com/xingshansi/p/6706400.html 聲明:歡迎被轉載,不過記得注明出處哦~ 前言 本文為聚類的第二篇,主要梳理NCut算法,關於聚類的更多 ...

Fri Apr 14 14:12:00 CST 2017 0 3027
聚類算法】聚類(Spectral Clustering)

目錄: 1、問題描述 2、問題轉化 3、划分准則 4、總結 1、問題描述   聚類(Spectral Clustering, SC)是一種基於圖論的聚類方法——將帶權無向圖划分為兩個或兩個以上的最優子圖(sub-Graph),使子圖內部盡量相似,而子圖間距離盡量距離較遠,以達到 ...

Sun Nov 03 20:25:00 CST 2013 0 4681
聚類算法(Spectral Clustering)優化與擴展

聚類(Spectral Clustering, SC)在前面的博文中已經詳述,是一種基於圖論的聚類方法,簡單形象且理論基礎充分,在社交網絡中廣泛應用。本文將講述進一步擴展其應用場景:首先是User-Item協同聚類,即spectral coclustering,之后再詳述聚類 ...

Tue Dec 03 08:56:00 CST 2013 0 5512
聚類spectral clustering)原理總結

    聚類spectral clustering)是廣泛使用的聚類算法,比起傳統的K-Means算法,聚類對數據分布的適應性更強,聚類效果也很優秀,同時聚類的計算量也小很多,更加難能可貴的是實現起來也不復雜。在處理實際的聚類問題時,個人認為聚類是應該首先考慮的幾種算法之一。下面我們就對 ...

Thu Dec 29 19:11:00 CST 2016 242 148368
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM