原文:決策樹與隨機森林算法

決策樹 決策樹模型是一種樹形結構,基於特征對實例進行分類或回歸的過程。即根據某個特征把數據分划分到若干個子區域 子樹 ,再對子區域遞歸划分,直到滿足某個條件則停止划分並作為葉子節點,不滿足條件則繼續遞歸划分。 一個簡單的決策樹分類模型:紅色框出的是特征。 決策樹模型學習過程通常包 個步驟:特征選擇 決策樹的生成 決策樹的修剪。 .特征選擇 選擇特征順序的不同將會產生不同決策樹,選擇好的特征能使得各 ...

2017-03-31 23:34 0 1995 推薦指數:

查看詳情

決策樹隨機森林

這里僅介紹分類決策樹決策樹:特征作為決策的判斷依據,整個模型形如樹形結構,因此,稱之為決策樹 對於分類決策樹,他們可以認為是一組if-then規則的集合。決策樹的每一個內部節點有特征組成,葉子節點代表了分類的結果。父節點和子節點之間是由有向邊連接,表示了決策 ...

Wed Jun 01 19:32:00 CST 2016 0 1589
決策樹隨機森林

一、決策樹 決策樹(decision tree)是一種基本的分類與回歸方法,本篇主要討論用於分類的決策樹。 1.決策樹模型 分類決策樹模型是一種描述對實例進行分類的樹形結構。決策樹由結點(node)和有向邊(directed edge)組成。結點有兩種類型:內部結點(internal ...

Thu Jan 17 20:20:00 CST 2019 0 678
決策樹隨機森林

一.決策樹 決策樹原理 : 通過對一系列問題進行if/else的推導,最終實現決策. 1.決策樹的構建 ############################# 決策樹的構建 ####################################### #導入numpy ...

Sat May 18 17:36:00 CST 2019 0 1765
決策樹隨機森林

首先,在了解樹模型之前,自然想到模型和線性模型有什么區別呢?其中最重要的是,樹形模型是一個一個特征進行處理,之前線性模型是所有特征給予權重相加得到一個新的值。決策樹與邏輯回歸的分類區別也在於此,邏輯回歸是將所有特征變換為概率后,通過大於某一概率閾值的划分為一類,小於某一概率閾值的為另一類 ...

Thu Sep 22 05:00:00 CST 2016 2 152178
【學習筆記】分類算法-決策樹隨機森林

目錄 特征選擇 信息的度量和作用 信息增益 信息增益的計算 常見決策樹使用的算法 sklearn決策樹API 泰坦尼克號案例 決策樹的優缺點以及改進 集成學習方法-隨機森林 學習算法 ...

Thu Mar 21 04:40:00 CST 2019 0 544
決策樹隨機森林分類算法(Python實現)

一、原理: 決策樹:能夠利用一些決策結點,使數據根據決策屬性進行路徑選擇,達到分類的目的。 一般決策樹常用於DFS配合剪枝,被用於處理一些單一算法問題,但也能進行分類 。 也就是通過每一個結點的決策進行分類,那么關於如何設置這些結點的決策方式: 熵:描述一個集合內元素混亂程度的因素。 熵 ...

Sun Feb 23 18:00:00 CST 2020 0 2488
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM