原文:決策樹--信息增益,信息增益比,Geni指數的理解

決策樹 是表示基於特征對實例進行分類的樹形結構 從給定的訓練數據集中,依據特征選擇的准則,遞歸的選擇最優划分特征,並根據此特征將訓練數據進行分割,使得各子數據集有一個最好的分類的過程。 決策樹算法 要素: 特征選擇 決策樹生成 決策樹剪枝 部分理解: 關於決策樹生成 決策樹的生成過程就是 使用滿足划分准則的特征不斷的將數據集划分為純度更高,不確定性更小的子集的過程。 對於當前數據集D的每一次的划 ...

2017-03-17 16:05 5 58976 推薦指數:

查看詳情

決策樹(一):原理&熵&條件熵&信息增益

1.決策樹思想:以信息增益作為指標,得出最高效的一種決策方案,可用於回歸或者分類問題。【由if-else演化而來,后續可發展成機器學習中的隨機森林算法】 2.決策樹指標: 香農:消除隨機不確定性的東西。 信息熵:定量表示(某種事物)隨機不確定性的大小。 樣本:假設一個人身上有四種 ...

Thu Apr 30 06:51:00 CST 2020 0 580
決策樹 - 熵,信息增益的計算

故事從一條小學數學題說起 "爸爸,熊貓為什么是3個不是11個" "寶貝,你還沒學二進制好嗎....." 以上故事純屬虛構,真實的對話其實是這樣的 "爸爸, 為什么3比4小" "寶貝,數一 ...

Thu Dec 01 04:43:00 CST 2016 4 9916
《機器學習(周志華)》筆記--決策樹(2)--划分選擇:信息熵、信息增益信息增益率、基尼指數

四、划分選擇   1、屬性划分選擇   構造決策樹的關鍵是如何選擇最優划分屬性。一般而言,隨着划分過程不斷進行,我們希望決策樹的分支結點所包含的樣本盡可能屬於同一類別,即結點的“純度”越來越高。   常用屬性划分的准則:     (1)ID3:信息增益     (2)C4.5:增益率 ...

Tue Feb 04 02:23:00 CST 2020 0 1928
決策樹算法-信息熵-信息增益-信息增益率-GINI系數-轉

1. 算法背景介紹 分類決策樹)是一種十分常用的分類方法。他是一種監管學習,所謂監管學習說白了很簡單,就是給定一堆樣本,每個樣本都有一組屬性和一個類別,這些類別是事先確定的,那么通過學習得到一個分類器,這個分類器能夠對新出現的對象給出正確的分類。這樣的機器學習就被稱之為監督學習。分類本質上 ...

Wed Aug 17 02:41:00 CST 2016 1 8642
信息增益信息增益比、基尼指數的比較

ID3、C4.5和CART三種經典的決策樹模型分別使用了信息增益信息增益比和基尼指數作為選擇最優的划分屬性的准則來構建決策樹。以分類來說,構建決策樹的過程就是從根節點(整個數據集)向下進行節點分裂(划分數據子集)的過程,每次划分需要讓分裂后的每個子集內部盡可能包含同一類樣本。信息增益信息增益 ...

Sun Jun 07 07:08:00 CST 2020 0 2341
決策樹算法2-決策樹分類原理2.2-信息增益

決策樹的划分依據--信息增益 1 概念 1.1 定義 信息增益:以某特征划分數據集前后的熵的差值。熵可以表示樣本集合的不確定性,熵越大,樣本的不確定性就越大。因此可以使用划分前后集合熵的差值來衡量使用當前特征對於樣本集合D划分效果的好壞。 信息增益 = entroy(前 ...

Wed Sep 22 21:46:00 CST 2021 0 111
決策樹算法2-決策樹分類原理2.3-信息增益

決策樹的划分依據-信息增益率C4.5 1 背景 信息增益准則ID3對可取值數目較多的屬性有所偏好,為減少這種偏好可能帶來的不利影響,著名的 C4.5 決策樹算法[Quinlan, 1993J 不直接使用信息增益,而是使用"增益率" (gain ratio) 來選擇最優划分 ...

Wed Sep 22 23:22:00 CST 2021 0 230
決策樹算法一:hunt算法,信息增益(ID3)

決策樹入門 決策樹是分類算法中最重要的算法,重點 決策樹算法在電信營業中怎么工作? 這個工人也是流失的,在外網轉移比處雖然沒有特征來判斷,但是在此節點處流失率有三個分支概率更大 為什么叫決策樹?  因為的葉子節點是我們最終預判的結果。決策樹如何來?  根據訓練樣本建立 ...

Thu Apr 22 17:28:00 CST 2021 0 292
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM