網易公開課,第3,4課 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面討論了線性回歸問題, 符合高斯分布,使用最小二乘來作為損失函數 下面繼續討論分類問題,分類問題和回歸問題不同在於Y的取值是離散的 我們先討論最簡單 ...
最近翻Peter Harrington的 機器學習實戰 ,看到Logistic回歸那一章有點小的疑問。 作者在簡單介紹Logistic回歸的原理后,立即給出了梯度上升算法的code:從算法到代碼跳躍的幅度有點大,作者本人也說了,這里略去了一個簡單的數學推導。 那么其實這個過程在Andrew Ng的機器學習公開課里也有講到。現在回憶起來,大二看Andrew的視頻的時候心里是有這么一個疙瘩 Andre ...
2017-02-14 00:37 3 3327 推薦指數:
網易公開課,第3,4課 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面討論了線性回歸問題, 符合高斯分布,使用最小二乘來作為損失函數 下面繼續討論分類問題,分類問題和回歸問題不同在於Y的取值是離散的 我們先討論最簡單 ...
網易公開課,監督學習應用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 線性回歸(Linear Regression) 先看個例子,比如,想用面積和卧室個數來預測房屋的價格 訓練集如下 首先,我們假設為線性模型 ...
Logistic 回歸 通常是二元分類器(也可以用於多元分類),例如以下的分類問題 Email: spam / not spam Tumor: Malignant / benign 假設 (Hypothesis):$$h_\theta(x) = g(\theta^Tx ...
網易公開課,第6,7,8課 notes,http://cs229.stanford.edu/notes/cs229-notes3.pdf SVM-支持向量機算法概述, 這篇講的挺好,可以參考 先繼續前面對線性分類器的討論, 通過機器學習算法找到的線性分類的線,不是唯一的,對於一個訓練集 ...
前言 在上一篇隨筆里,我們講了Logistic回歸cost函數的推導過程。接下來的算法求解使用如下的cost函數形式: 簡單回顧一下幾個變量的含義: 表1 cost函數解釋 x(i) 每個樣本數據點在某一個特征上的值,即特征向量x的某個值 ...
課程設置和內容 視頻課程分為20集,每集72-85分鍾。實體課程大概一周2次,中間還穿插助教上的習題課,大概一個學期的課程。 內容涉及四大部分,分別是:監督學習(2-8集)、學習理論(9集-11集)、 ...
多元線性回歸 一元線性回歸只有一個特征$x$,而多元線性回歸可以有多個特征$x_1, x_2, \ldots, x_n$ 假設 (Hypothesis):$h_\theta(x)=\theta^Tx=\theta_0x_0+\theta_1x_1+\ldots+\theta_nx_n$ 參數 ...
matlab基礎教程——根據Andrew Ng的machine learning整理 基本運算 算數運算 邏輯運算 格式化輸出 小數位全局修改 向量和矩陣運算 矩陣操作 申明一個矩陣或向量 快速建立一個矩陣或向量 ...