1. 正則化概述(Regularization) 監督學習可以簡單的理解為在最小化loss function 的同時,保證模型的復雜度盡可能的低,防止出現過擬合(overfitting)。常用的loss函數有square loss(Regression),Hinge ...
理解正則化 目錄 理解正則化 正則化的由來 L L 對模型空間限制的解釋: 關於正則化是貝葉斯先驗,整個優化目標是最大后驗概率的解釋: 正則化的由來 有幾種角度來看待正則化 Regularization ,它符合奧卡姆剃刀 Occam s razor 原理:在所有可能選擇的模型中,能夠很好地解釋已知數據並且十分簡單的才是最好的模型。從貝葉斯估計的角度來看,正則化項對應於模型的先驗概率。還有個說法就 ...
2017-01-04 11:34 0 1833 推薦指數:
1. 正則化概述(Regularization) 監督學習可以簡單的理解為在最小化loss function 的同時,保證模型的復雜度盡可能的低,防止出現過擬合(overfitting)。常用的loss函數有square loss(Regression),Hinge ...
1. The Problem of Overfitting 1 還是來看預測房價的這個例子,我們先對該數據做線性回歸,也就是左邊第一張圖。 如果這么做,我們可以獲得擬合數據的這樣一條直線,但 ...
1. The Problem of Overfitting 1 還是來看預測房價的這個例子,我們先對該數據做線性回歸,也就是左邊第一張圖。 如果這么做,我們可以獲得擬合數據的這樣一條直線,但 ...
我們在訓練的時候經常會遇到這兩種情況: 1、模型在訓練集上誤差很大。 2、模型在訓練集上誤差很小,表現不錯,但是在測試集上的誤差很大 我們先來分析一下這兩個問題: 對於第一個問題,明顯就是沒有訓練好,也就是模型沒有很好擬合數據的能力,並沒有學會如何擬合,可能是因為在訓練時我們選擇了較少 ...
首先述說什么是正則化, 正則化是結構風險最小化策略的實現,是在經驗風險上加上一個正則項(regularizer)或罰項(penalty term)。是模型選擇的典型方法。正則化項一般是模型復雜度的單調遞增函數,模型越復雜,正則化值越大。比較常用的正則化項有模型參數向量的范數,l1-norm ...
到現在為止,我們已經學習了幾種不同的學習算法,包括線性回歸和邏輯回歸,它們能夠有效地解決許多問題,但是當將它們應用到某些特定的機器學習應用時,會遇到過擬合(over-fitting)的問題,可能會導致它們效果很差。 一:過度擬合問題 (一)線性回歸中的過擬合問題 繼續使用線性回歸來預測房價 ...
機器學習中的范數正則化 機器學習中的范數正則化 1. \(l_0\)范數和\(l_1\)范數 2. \(l_2\)范數 3. 核范數(nuclear norm) 參考文獻 使用正則化有兩大目標: 抑制過擬合; 將先驗知識 ...
L2正則化、L1正則化與稀疏性 [抄書] 《百面機器學習:算法工程師帶你去面試》 為什么希望模型參數具有稀疏性呢?稀疏性,說白了就是模型的很多參數是0。這相當於對模型進行了一次特征選擇,只留下一些比較重要的特征,提高模型的泛化能力,降低過擬合的可能。在實際應用中,機器學習模型的輸入 ...