點擊運行,運行過程中,可以看到,生成的每個圖片對應行對應列都是一樣的數字,這是因為我們加了條件約束;采 ...
前面我們用 TensorFlow 寫了簡單的 cifar 分類的代碼,得到還不錯的結果,下面我們來研究一下生成式對抗網絡 GAN,並且用 TensorFlow 代碼實現。 自從 Ian Goodfellow 在 年發表了 論文 Generative Adversarial Nets 以來,生成式對抗網絡 GAN 廣受關注,加上學界大牛 Yann Lecun 在 Quora 答題時曾說,他最激動的深 ...
2017-01-02 17:38 3 84743 推薦指數:
點擊運行,運行過程中,可以看到,生成的每個圖片對應行對應列都是一樣的數字,這是因為我們加了條件約束;采 ...
前面我們了解了 GAN 的原理,下面我們就來用 TensorFlow 搭建 GAN(嚴格說來是 DCGAN,如無特別說明,本系列文章所說的 GAN 均指 DCGAN),如前面所說,GAN 分為有約束條件的 GAN,和不加約束條件的GAN,我們先來搭建一個簡單的 MNIST 數據集上加約束條件 ...
GAN 這個領域發展太快,日新月異,各種 GAN 層出不窮,前幾天看到一篇關於 Wasserstein GAN 的文章,講的很好,在此把它分享出來一起學習:https://zhuanlan.zhihu.com/p/25071913。相比 Wasserstein GAN ,我們的 DCGAN 好像 ...
先來梳理一下我們之前所寫的代碼,原始的生成對抗網絡,所要優化的目標函數為: 此目標函數可以分為兩部分來看: ①固定生成器 G,優化判別器 D, 則上式可以寫成如下形式: 可以轉化為最小化形式: 我們編寫的代碼中,d_loss_real = tf.reduce_mean ...
文件 model.py,定義生成器,判別器和訓練過程中的采樣網絡,在 model.py 輸入如下代碼: ...
在Auto-encoder中,input data通過一個encoder神經網絡得到一個維度的較低的向量,稱這個向量為code,code經過一個decoder神經網絡后輸出一個output data。 encoder 網絡的作用是用來發現給定數據的壓縮表示。decoder網絡使原始輸入的盡可 ...
通過GAN生成式對抗網絡,產生mnist數據 引入包,數據約定等 GAN對象結構 生成器函數 對隨機值z(維度為1,100),進行包裝,偽造,產生偽造數據。 包裝過程概括為:全連接->reshape->反卷積 包裝過程中使用了batch_normalization ...
,生成一副美麗的風景畫。但隨着GAN的出現,這些都成為了可能。 什么是GAN? 生成式對抗網絡(G ...