原文:譜聚類(spectral clustering)原理總結

譜聚類 spectral clustering 是廣泛使用的聚類算法,比起傳統的K Means算法,譜聚類對數據分布的適應性更強,聚類效果也很優秀,同時聚類的計算量也小很多,更加難能可貴的是實現起來也不復雜。在處理實際的聚類問題時,個人認為譜聚類是應該首先考慮的幾種算法之一。下面我們就對譜聚類的算法原理做一個總結。 . 譜聚類概述 譜聚類是從圖論中演化出來的算法,后來在聚類中得到了廣泛的應用。它 ...

2016-12-29 11:11 242 148368 推薦指數:

查看詳情

聚類(spectral clustering)

1. 聚類 給你博客園上若干個博客,讓你將它們分成K類,你會怎樣做?想必有很多方法,本文要介紹的是其中的一種——聚類聚類的直觀解釋是根據樣本間相似度,將它們分成不同組。聚類的思想是將樣本看作頂點,樣本間的相似度看作帶權的邊,從而將聚類問題轉為圖分割問題:找到一種圖 ...

Thu Jun 21 19:04:00 CST 2012 4 46728
聚類】關於聚類Spectral Clustering)的一個總結

本文將對聚類的知識進行一些總結。目的在於記錄自己的學習經歷,當作自己的筆記來寫。寫得不好的地方歡迎交流指正。聚類是一種非常流行的聚類算法,它不需要對簇的類型有很強的假設,可以聚類任何形狀的數據。 一、簡要介紹 由於網上有許多的關於聚類的介紹,所以我這里只是簡要介紹 ...

Sat Nov 03 00:41:00 CST 2018 0 6134
聚類算法(Spectral Clustering)

聚類(Spectral Clustering, SC)是一種基於圖論的聚類方法——將帶權無向圖划分為兩個或兩個以上的最優子圖,使子圖內部盡量相似,而子圖間距離盡量距離較遠,以達到常見的聚類的目的。其中的最優是指最優目標函數不同,可以是割邊最小分割——如圖1的Smallest cut ...

Wed Jun 26 08:02:00 CST 2013 12 27320
聚類算法(Spectral Clustering)

聚類(Spectral Clustering, SC)是一種基於圖論的聚類方法——將帶權無向圖划分為兩個或兩個以上的最優子圖,使子圖內部盡量相似,而子圖間距離盡量距離較遠,以達到常見的聚類的目的。其中的最優是指最優目標函數不同,可以是割邊最小分割——如圖1的Smallest cut(如后 ...

Wed Jun 17 03:52:00 CST 2015 0 2749
聚類(Spectral Clustering)詳解

聚類(Spectral Clustering)詳解 聚類(Spectral Clustering, SC)是一種基於圖論的聚類方法——將帶權無向圖划分為兩個或兩個以上的最優子圖,使子圖內部盡量相似,而子圖間距離盡量距離較遠,以達到常見的聚類的目的。其中的最優是指最優目標函數 ...

Wed Jun 26 17:57:00 CST 2013 4 39221
聚類Spectral clustering)(2):NCut

作者:桂。 時間:2017-04-13 21:19:41 鏈接:http://www.cnblogs.com/xingshansi/p/6706400.html 聲明:歡迎被轉載,不過記得注明出處哦~ 前言 本文為聚類的第二篇,主要梳理NCut算法,關於聚類的更多 ...

Fri Apr 14 14:12:00 CST 2017 0 3027
聚類算法】聚類(Spectral Clustering)

目錄: 1、問題描述 2、問題轉化 3、划分准則 4、總結 1、問題描述   聚類(Spectral Clustering, SC)是一種基於圖論的聚類方法——將帶權無向圖划分為兩個或兩個以上的最優子圖(sub-Graph),使子圖內部盡量相似,而子圖間距離盡量距離較遠,以達到 ...

Sun Nov 03 20:25:00 CST 2013 0 4681
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM