一個簡單的例子 朴素貝葉斯算法是一個典型的統計學習方法,主要理論基礎就是一個貝葉斯公式,貝葉斯公式的基本定義如下: 這個公式雖然看上去簡單,但它卻能總結歷史,預知未來。公式的右邊是總結歷史,公式的左邊是預知未來,如果把Y看出類別,X看出特征,P(Yk|X)就是在已知特征X ...
前言 朴素貝葉斯算法最為廣泛而經典的應用毫無疑問是文檔分類,更具體的情形是郵件過濾系統。 本文詳細地講解一個基於朴素貝葉斯分類算法的郵件過濾系統的具體實現。 本文側重於工程實現,至於其中很多算法的細節請參考之前的一篇文章:朴素貝葉斯分類算法原理分析與代碼實現。 准備數據:切分文本 獲取到文本文件之后,首先要做的是兩件事情: . 將文本文件轉換為詞匯列表 . 將上一步的結果進一步轉換為詞向量 對於 ...
2017-01-19 09:18 0 1462 推薦指數:
一個簡單的例子 朴素貝葉斯算法是一個典型的統計學習方法,主要理論基礎就是一個貝葉斯公式,貝葉斯公式的基本定義如下: 這個公式雖然看上去簡單,但它卻能總結歷史,預知未來。公式的右邊是總結歷史,公式的左邊是預知未來,如果把Y看出類別,X看出特征,P(Yk|X)就是在已知特征X ...
貝葉斯定理是關於隨機事件A和B的條件概率的一則定理(比如常見的:P(A|B)是在B發生的情況下A發生的可能性)。 朴素的含義是各特征相互獨立,且同等重要。某些 分類算法均以貝葉斯定理為基礎。由此產生了 朴素貝葉斯分類算法。 朴素貝葉斯分類算法的思想基礎是:對於給出 ...
朴素貝葉斯(Naive Bayesian)是基於貝葉斯定理和特征條件獨立假設的一種分類算法。朴素貝葉斯想必是很多人在剛學習機器學習時想去第一個學習的算法,因為它朴素呀、簡單呀(我記得當時的想法就是這樣)。它真的那么簡單么?今天我們就來討論一下這個“簡單”的機器學習算法。 貝葉斯定理 ...
1.理解分類與監督學習、聚類與無監督學習。 簡述分類與聚類的聯系與區別。 (1)分類:給數據貼標簽,通過分析已有的數據特征,對數據分成幾類,已知分類結果。然后引入新數據對其歸類。分類可以提高認知效率,較低認知成本。 (2)聚類:不知分類結果,通過數據一定的相似性,把那些相似的數據聚集在一起 ...
一、算法介紹 朴素貝葉斯法,簡稱NB算法,是貝葉斯決策理論的一部分,是基於貝葉斯定理與特征條件獨立假設的分類方法: 首先理解兩個概念: · 先驗概率是指根據以往經驗和分析得到的概率,它往往作為“由因求果”問題中的“因”出現; · 后驗概率是指在得到“結果”的信息后重新修正的概率,是“執果尋 ...
先上問題吧,我們統計了14天的氣象數據(指標包括outlook,temperature,humidity,windy),並已知這些天氣是否打球(play)。如果給出新一天的氣象指標數據:sunny,c ...
朴素貝葉斯最著名的一個應用:電子郵件垃圾過濾。 准備數據:切分文本 采用正則表達式和split()函數進行,和Java語言的字符串分割基本類似,略去不講 第一個函數傳入一個字符串,將其轉化成字符串列表,並且去掉少於兩個字符的字符串,並將所有字符串轉換為小寫 第二個 ...
待處理的數據為放在兩個文件夾中的各25個txt文本,文本信息為電子郵件內容,文件夾spam中的25個郵件都是正常郵件;ham中的25個郵件是垃圾郵件; 利用朴素貝葉斯算法,訓練分類器,采取交叉驗證的方式,結果證明,分類器能夠很好的識別垃圾郵件; 代碼主要參考【機器學習實戰 ...