一、k-近鄰算法概述 1、什么是k-近鄰算法 如果一個樣本在特征空間中的k個最相似(即特征空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。 2、歐式距離 兩個樣本的距離可以通過如下公式計算,又叫歐式距離。比方說計算a(a1,a2,a3),b(b1,b2,b3)樣本 ...
前言 假如你想到某個在線約會網站尋找約會對象,那么你很可能將該約會網站的所有用戶歸為三類: . 不喜歡的 . 有點魅力的 . 很有魅力的 你如何決定某個用戶屬於上述的哪一類呢 想必你會分析用戶的信息來得到結論,比如該用戶 每年獲得的飛行常客里程數 , 玩網游所消耗的時間比 , 每年消耗的冰淇淋公升數 。 使用機器學習的K 近鄰算法,可以幫助你在獲取到用戶的這三個信息后 或者更多信息 方法同理 ,自 ...
2017-01-19 08:53 0 1466 推薦指數:
一、k-近鄰算法概述 1、什么是k-近鄰算法 如果一個樣本在特征空間中的k個最相似(即特征空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。 2、歐式距離 兩個樣本的距離可以通過如下公式計算,又叫歐式距離。比方說計算a(a1,a2,a3),b(b1,b2,b3)樣本 ...
1. 概念 測量不同特征值之間的距離來進行分類 優點:精度高、對異常值不敏感、無數據輸入假定 缺點:計算復雜度高、空間復雜度高。 適用范圍:數值型和標稱型 工作原理: 存在一個樣本數據合計,也稱作訓練樣本集,並且樣本集中每個數據都存在標簽,即我們知道樣本集中每一數據與所屬分類的對應關系 ...
系列文章:《機器學習實戰》學習筆記 本章介紹了《機器學習實戰》這本書中的第一個機器學習算法:k-近鄰算法,它非常有效而且易於掌握。首先,我們將探討k-近鄰算法的基本理論,以及如何使用距離測量的方法分類物品;其次我們將使用Python從文本文件中導入並解析數據;再次,本文討論了當存在許多數據來源時 ...
前言 本文介紹機器學習分類算法中的K-近鄰算法並給出偽代碼與Python代碼實現。 算法原理 首先獲取訓練集中與目標對象距離最近的k個對象,然后再獲取這k個對象的分類標簽,求出其中出現頻數最大的標簽。 而這個標簽,就是分類的結果。 偽代碼 對訓練集做以下 ...
K-近鄰算法 K-K個 N-nearest-最近 N-Neighbor 來源:KNN算法最早是由Cover和Hart提出的一種分類算法 定義 如果一個樣本在特征空間中的k個最相似(即特征空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。 距離公式 ...
keyword 文本分類算法、簡單的機器學習算法、基本要素、距離度量、類別判定、k取值、改進策略 摘要 kNN算法是著名的模式識別統計學方法,是最好的文本分類算法之一,在機器學習分類算法中占有相當大的地位 ...
KNN算法是采用測量不同特征向量之間的距離的方法進行分類。 工作原理:存在一個數據集,數據集中的每個數據都有對應的標簽,當輸入一個新的沒有標簽的數據時,KNN算法找到與新數據特征量最相似的分類標簽。 KNN算法步驟: (1)選擇鄰近的數量k和距離度量方法; (2)找到待分類樣本的k個最近鄰 ...
一、K-近鄰算法原理 如圖所示,數據表中有兩個屬性,兩個標簽(A,B),預測最后一行屬於哪種標簽。 屬性一 屬性二 標簽 2.1 1.2 A 1.3 2.5 B ...