一、數據傾斜發生的原理 原理:在進行shuffle的時候,必須將各個節點上相同的key拉取到某個節點上的一個task來進行處理,比如按照key進行聚合或join等操作。此時如果某個key對應的數據量特別大的話,就會發生數據傾斜。數據傾斜只會發生在shuffle過程中。常用的並且可能會觸發 ...
調優概述 大多數Spark作業的性能主要就是消耗在了shuffle環節,因為該環節包含了大量的磁盤IO 序列化 網絡數據傳輸等操作。因此,如果要讓作業的性能更上一層樓,就有必要對shuffle過程進行調優。但是也必須提醒大家的是,影響一個Spark作業性能的因素,主要還是代碼開發 資源參數以及數據傾斜,shuffle調優只能在整個Spark的性能調優中占到一小部分而已。因此大家務必把握住調優的基 ...
2016-11-22 14:35 0 4374 推薦指數:
一、數據傾斜發生的原理 原理:在進行shuffle的時候,必須將各個節點上相同的key拉取到某個節點上的一個task來進行處理,比如按照key進行聚合或join等操作。此時如果某個key對應的數據量特別大的話,就會發生數據傾斜。數據傾斜只會發生在shuffle過程中。常用的並且可能會觸發 ...
Spark性能調優之Shuffle調優 • Spark底層shuffle的傳輸方式是使用netty傳輸,netty在進行網絡傳輸的過程會申請堆外內存(netty是零拷貝),所以使用了堆外內存 ...
spark shuffle參數調優 spark.shuffle.file.buffer 默認值:32k 參數說明:該參數用於設置shuffle write task的BufferedOutputStream的buffer緩沖大小。將數據寫到磁盤文件之前,會先寫入buffer緩沖中 ...
Shuffle 概述 影響Spark性能的大BOSS就是shuffle,因為該環節包含了大量的磁盤IO、序列化、網絡數據傳輸等操作。 因此,如果要讓作業的性能更上一層樓,就有必要對 shuffle 過程進行調優。 當然,影響 Spark 性能的還有代碼開發、參數設置數以及數據傾斜的解決 ...
在開發完Spark作業之后,就該為作業配置合適的資源了。Spark的資源參數,基本都可以在spark-submit命令中作為參數設置。很多Spark初學者,通常不知道該設置哪些必要的參數,以及如何設置這些參數,最后就只能胡亂設置,甚至壓根兒不設置。資源參數設置的不合理,可能會導致 ...
前言 繼《Spark性能優化:開發調優篇》和《Spark性能優化:資源調優篇》講解了每個Spark開發人員都必須熟知的開發調優與資源調優之后,本文作為《Spark性能優化指南》的高級篇,將深入分析數據傾斜調優與shuffle調優,以解決更加棘手的性能問題 ...
1、前言 在大數據計算領域,Spark已經成為了越來越流行、越來越受歡迎的計算平台之一。Spark的功能涵蓋了大數據領域的離線批處理、SQL類處理、流式/實時計算、機器學習、圖計算等各種不同類型的計算操作,應用范圍與前景非常廣泛。在美團•大眾點評,已經有很多同學 ...
1、spark匯聚失敗 出錯原因,hive默認配置中parquet和動態分區設置太小 2.hive數據入hbase報錯 出現報錯原因: executor_memory和dirver_memory太小,在增大內存后還會出現連接超時的報錯 解決連接超時 ...