一、實驗目的與實驗要求 1、實驗目的 (1)學會將串行程序改為並行程序。 (2)學會mpich2的使用。 (3)學會openmp的配置。 (4)mpi與openmp之間的比較。 2、實驗要求 (1)將串行冒泡程序局部並行化,以降低時間消耗。 (2) 理論上求出 ...
用c語言寫了kmeans算法的串行程序,再用mpi來寫並行版的,貌似參照着串行版來寫並行版,效果不是很賞心悅目 並行化思路: 使用主從模式。由一個節點充當主節點負責數據的划分與分配,其他節點完成本地數據的計算,並將結果返回給主節點。大致過程如下: 進程 為主節點,先從文件中讀取數據集,然后將數據集划分並傳給其他進程 進程 選擇每個聚類的中心點,並發送給其他進程 其他進程計算數據塊中每個點到中心點 ...
2016-10-30 20:38 0 3470 推薦指數:
一、實驗目的與實驗要求 1、實驗目的 (1)學會將串行程序改為並行程序。 (2)學會mpich2的使用。 (3)學會openmp的配置。 (4)mpi與openmp之間的比較。 2、實驗要求 (1)將串行冒泡程序局部並行化,以降低時間消耗。 (2) 理論上求出 ...
GPU計算的目的即是計算加速。相比於CPU,其具有以下三個方面的優勢: l 並行度高:GPU的Core數遠遠多於CPU(如G100 GPU有240個Cores),從而GPU的任務並發度也遠高於CPU; l 內存帶寬高:GPU的內存系統帶寬幾十倍高於CPU,如CPU (DDR-400)帶寬 ...
詳細代碼我已上傳到github:click me 一、 實驗要求 在 Spark2.3 平台上實現 Apriori 頻繁項集挖掘的並行化算法。要求程序利用 Spark 進行並行計算。 二、算法設計 2.1 設計思路 變量定義 D為數據集,設Lk是k ...
作為一名后台開發,寫shell腳本可能是工作中避免不了的,比如日志分析過濾、批量請求和批量插入數據等操作,這些如果單純靠人工手動去處理既費時又費力,有了shell腳本就可以輕松搞定,當然有人會說可以用 ...
生成的FP-tree非常大,無法放入內存,挖掘到的頻繁項也可能有指數多個。本文將分析如何並行化FP-Gr ...
大家好,下面為大家分享的實戰案例是K-頻繁相機挖掘並行化算法。相信從事數據挖掘相關工作的同學對頻繁項集的相關算法 比較了解,這里我們用Apriori算法及其優化算法實現。 首先說一下實驗結果。對於2G,1800W條記錄的數據,我們用了18秒就算完了1-8頻繁項集的挖掘。應該 ...
作者:gnuhpc 出處:http://www.cnblogs.com/gnuhpc/ #include "cv.h" #include "highgui.h" #include <std ...
[學習筆記] parallelize並行化集合是根據一個已經存在的Scala集合創建的RDD對象。集合的里面的元素將會被拷貝進入新創建出的一個可被並行操作的分布式數據集。例如:val rdd03 = sc.parallelize(List(1, 4, 3, 7, 5)) 根據系統環境來進行切分 ...