特征縮放的幾種方法: (1)最大最小值歸一化(min-max normalization):將數值范圍縮放到 [0, 1] 區間里 (2)均值歸一化(mean normalization):將數值范圍縮放到 [-1, 1] 區間里,且數據的均值變為 ...
在進行特征縮放的時候,其一般做法是 X mu sigma mu:代表均值 sigma:代表標准差 在matlab中,函數mean可以求特征的均值,函數std可以求特征的標准差。 假設訓練集為m,特征數量為n,特征矩陣為X,則X的size為 m n。 則 mu mean X 返回值為一個 n的向量,向量中每個值對應於每個特征的均值。 則 sigma std X 返回值為一個 n的向量,向量中每個值對 ...
2016-10-16 14:24 0 1438 推薦指數:
特征縮放的幾種方法: (1)最大最小值歸一化(min-max normalization):將數值范圍縮放到 [0, 1] 區間里 (2)均值歸一化(mean normalization):將數值范圍縮放到 [-1, 1] 區間里,且數據的均值變為 ...
Andrew在他的機器學習課程里強調,在進行學習之前要進行特征縮放,目的是保證這些特征都具有相近的尺度,這將幫助梯度下降算法更快地收斂。 python里常用的是preprocessing.StandardScaler() 公式為:(X-mean)/std 計算時對每個屬性/每列分別進行 ...
##基礎概念 特征工程是通過對原始數據的處理和加工,將原始數據屬性通過處理轉換為數據特征的過程,屬性是數據本身具有的維度,特征是數據中所呈現出來的某一種重要的特性,通常是通過屬性的計算,組合或轉換得到的。比如主成分分析就是將大量的數據屬性轉換為少數幾個特征的過程。某種程度而言,好的數據以及特征 ...
概述:上節咱們說了特征工程是機器學習的一個核心內容。然后咱們已經學習了特征工程中的基礎內容,分別是missing value handling和categorical data encoding的一些方法技巧。但是光會前面的一些內容,還不足以應付實際的工作中的很多情況,例如如果咱們的原始數據 ...
No.1. 數據歸一化的目的 數據歸一化的目的,就是將數據的所有特征都映射到同一尺度上,這樣可以避免由於量綱的不同使數據的某些特征形成主導作用。 No.2. 數據歸一化的方法 數據歸一化的方法主要有兩種:最值歸一化和均值方差歸一化 ...
原文鏈接:https://developers.google.com/machine-learning/crash-course/feature-crosses/ 特征組合是指兩個或多個特征相乘形成的合成特征。特征的相乘組合可以提供超出這些特征單獨能夠提供的預測能力。 1- 對非線性規律進行 ...
1 引言 特征提取和特征選擇作為機器學習的重點內容,可以將原始數據轉換為更能代表預測模型的潛在問題和特征的過程,可以通過挑選最相關的特征,提取特征和創造特征來實現。要想學習特征選擇必然要了解什么是特征提取和特征創造,得到數據的特征之后對特征進行精煉,這時候就要用到特征選擇。本文主要介紹 ...
不多說,直接上干貨! ...