原文鏈接:https://www.zhihu.com/collection/172241377 感受野(receptive field)可能是卷積神經網絡(Convolutional Neural Network,CNNs)中最重要的概念之一,值得我們關注和學習。當前流行的物體識別方法 ...
學習RCNN系列論文時, 出現了感受野 receptive field 的名詞, 感受野的尺寸大小是如何計算的,在網上沒有搜到特別詳細的介紹, 為了加深印象,記錄下自己對這一感念的理解,希望對理解基於CNN的物體檢測過程有所幫助。 感受野的概念 在卷積神經網絡中,感受野的定義是 卷積神經網絡每一層輸出的特征圖 feature map 上的像素點在原始圖像上映射的區域大小。 RCNN論文中有一段描 ...
2016-10-11 10:08 0 36221 推薦指數:
原文鏈接:https://www.zhihu.com/collection/172241377 感受野(receptive field)可能是卷積神經網絡(Convolutional Neural Network,CNNs)中最重要的概念之一,值得我們關注和學習。當前流行的物體識別方法 ...
由於在word中編輯,可能有公式、visio對象等,所以選擇截圖方式…… 計算接受野的Python代碼: Python代碼來源http://stackoverflow.com/questions/35582521 ...
感受野(receptive field) CNN中,某一層輸出結果中一個元素所對應的輸入層的區域大小. 感受野計算 從后往前 output field size = ( input field size - kernel size + 2 × padding ) / stride ...
在機器視覺領域的深度神經網絡中有一個概念叫做感受野,用來表示網絡內部的不同位置的神經元對原圖像的感受范圍的大小。神經元之所以無法對原始圖像的所有信息進行感知,是因為在這些網絡結構中普遍使用卷積層和pooling層,在層與層之間均為局部相連(通過sliding filter)。神經元感受野的值 ...
核的感受野大小為: 2、特征圖大小計算。假定輸入空洞卷積的大小為 i,步長 為 s ,空 ...
最近復習了一下卷積神經網絡,好久沒看都搞忘了。 計算特征圖的公式如下: 其中n表示原來圖像的大小,p表示padding的大小,f表示filter的大小,s表示stride,計算完成之后向下取整,就可以了。這里記錄一下這個公式,以免自己搞忘了。同時,還有一個容易搞忘的地方是,在圖像 ...
1、目標定位:(以定位汽車為例) 將圖像分類:行人、汽車、摩托車、純背景圖,使用softmax函數輸出結果. 輸出的結果不僅僅是分類,還有四個標記:bx、by、bh、bw. 這四個數據為被檢測對象的邊界框的參數. 左上角坐標(0,0),右下角坐標(1,1). 輸出結果的表示形式 ...
本章介紹目標定位和目標檢測(包含多目標檢測)。 1. Object Localization 原始圖片經過CONV卷積層后,Softmax層輸出4 x 1向量,分別是: 注意,class label也可能是概率。上述四個向量分別對應pedestrain,car,motorcycle ...