我們來看看在圖像處理領域如何使用卷積神經網絡來對圖片進行分類。 1 讓計算機做圖片分類: 圖片分類就是輸入一張圖片,輸出該圖片對應的類別(狗,貓,船,鳥),或者說輸出該圖片屬於哪種分類的可能性最大。 人類看到一張圖片馬上就能分辨出里面的內容,但是計算機分辨一張圖片就完全 ...
接上篇:卷積神經網絡對圖片分類 中 ReLU Rectified Linear Units Layers 在每個卷積層之后,會馬上進入一個激勵層,調用一種激勵函數來加入非線性因素,決絕線性不可分的問題。這里我們選擇的激勵函數方式叫做ReLU, 他的方程是這樣f x max , x ,就是把小於零的值都歸為 ,好處是可以是網絡訓練的更快,減少梯度消失的問題出現。具體如何理解,例如: 上圖A中可以通過 ...
2016-09-13 14:50 0 3239 推薦指數:
我們來看看在圖像處理領域如何使用卷積神經網絡來對圖片進行分類。 1 讓計算機做圖片分類: 圖片分類就是輸入一張圖片,輸出該圖片對應的類別(狗,貓,船,鳥),或者說輸出該圖片屬於哪種分類的可能性最大。 人類看到一張圖片馬上就能分辨出里面的內容,但是計算機分辨一張圖片就完全 ...
接上篇:卷積神經網絡對圖片分類-上 5 池層(Pooling Layers) 池層通常用在卷積層之后,池層的作用就是簡化卷積層里輸出的信息, 減少數據維度,降低計算開銷,控制過擬合。 如之前所說,一張28X28的輸入圖片,經過5X5的過濾器后會得到一個24X24的特征圖像,繼續 ...
tensorflow搭建卷積神經網絡非常簡單,我們使用卷積神經網絡對fashion mnist數據集進行圖片分類,首先導包: 導入數據集: 查看圖片的shape維度: 輸出: 由於我們卷積神經網絡需要的是四維的數據,也就是一共 ...
利用TensorFlow1.0搭建卷積神經網絡用於識別MNIST數據集,算是深度學習里的hello world吧。雖然只有兩個卷積層,但在訓練集上的正確率已經基本達到100%了。 代碼如下: 訓練一共訓練了3個多小時,訓練效果應當很棒。 但在測試集上,由於一次直接讀入10000 ...
先簡單理解一下卷積這個東西。 (以下轉自https://blog.csdn.net/bitcarmanlee/article/details/54729807 知乎是個好東西) 1.知乎上排名最高的解釋 首先選取知乎上對卷積物理意義解答排名最靠前的回答。 不推薦用“反轉/翻轉/反褶/對稱 ...
的全部(全像素全連接),並且只是簡單的映射,並沒有對物體進行抽象處理。 誰對誰錯呢?卷積神經網絡(C ...
卷積神經網絡這個詞,應該在你開始學習人工智能不久后就聽過了,那究竟什么叫卷積神經網絡,今天我們就聊一聊這個問題。 不用思考,左右兩張圖就是兩只可愛的小狗狗,但是兩張圖中小狗狗所處的位置是不同的,左側圖片小狗在圖片的左側,右側圖片小狗在圖片的右下方,這樣如果去用圖片特征識別出來的結果,兩張圖 ...
一、學習心得及問題 心得 趙亮:對於卷積神經網絡的定義有了初步的理解,卷積神經網絡在圖片分類、檢索、分割、檢測,人臉識別等領域有廣泛的應用。使用局部關聯、參數共享的方式解決了全連接網絡過擬合的缺點。同時也了解了卷積的具體含義,對AlexNet、ZFNet、VGG等典型的神經網絡結構有了初步 ...