原文:(轉)機器學習中的損失函數

損失函數 loss function 是用來估量你模型的預測值f x 與真實值Y的不一致程度,它是一個非負實值函數,通常使用L Y, f x 來表示,損失函數越小,模型的魯棒性就越好。損失函數是經驗風險函數的核心部分,也是結構風險函數重要組成部分。模型的結構風險函數包括了經驗風險項和正則項,通常可以表示成如下式子: 其中,前面的均值函數表示的是經驗風險函數,L代表的是損失函數,后面的 是正則化項 ...

2016-08-18 10:23 0 23995 推薦指數:

查看詳情

機器學習損失函數

損失函數(loss function)是用來估量你模型的預測值f(x)與真實值Y的不一致程度,它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。損失函數是經驗風險函數的核心部分,也是結構風險函數重要組成部分。模型的結構風險函數包括了經驗風險項和正則項,通常 ...

Tue Nov 21 19:27:00 CST 2017 0 4467
機器學習損失函數

着重介紹hige loss 和 softmax loss。 svm回顧 \(C_1,C_2\)是要區分的兩個類別,通過分類函數執行時得到的值與閾值的大小關系來決定類別歸屬,例如: \[g(x) = g(w^Tx+b) \] 我們取閾值為0,此時\(f(x)=sgn[g(x ...

Sat Dec 22 20:42:00 CST 2018 0 642
機器學習】什么是損失函數

一、定義 損失函數(loss function)是用來估量你模型的預測值f(x)與真實值Y的不一致程度,它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。 經典機器學習算法,他們最本質的區別是分類思想(預測f(x)的表達式)不同,有的是 ...

Tue Feb 15 19:24:00 CST 2022 0 1023
機器學習損失函數

0. 前言 1. 損失函數 2. Margin 3. Cross-Entropy vs. Squared Error 總結 參考資料 0. 前言 “盡管新技術新算法層出不窮,但是掌握好基礎算法就能解決手頭 90% 的機器學習問題 ...

Fri Dec 01 05:17:00 CST 2017 0 4094
機器學習-——損失函數

###基礎概念 損失函數(loss function)是用來估量你模型的預測值f(x)與真實值Y的不一致程度,換句話,可以解釋為我們構建模型得到的預測值與真實值之間的差距。它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。損失函數是經驗風險函數的核心 ...

Tue Oct 23 05:26:00 CST 2018 0 5430
機器學習常用損失函數

信息熵 信息熵也被稱為熵,用來表示所有信息量的期望。 公式如下: 例如在一個三分類問題中,貓狗馬的概率如下: label 貓 狗 馬 ...

Wed Feb 03 00:07:00 CST 2021 0 306
機器學習中常見的損失函數

  損失函數機器學習中常用於優化模型的目標函數,無論是在分類問題,還是回歸問題,都是通過損失函數最小化來求得我們的學習模型的。損失函數分為經驗風險損失函數和結構風險損失函數。經驗風險損失函數是指預測結果和實際結果的差別,結構風險損失函數是指經驗風險損失函數加上正則項。通常 ...

Mon Jul 02 04:34:00 CST 2018 0 2050
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM