簡介:最近在看邏輯回歸算法,在算法構建模型的過程中需要對參數進行求解,采用的方法有梯度下降法和無約束項優化算法。之前對無約束項優化算法並不是很了解,於是在學習邏輯回歸之前,先對無約束項優化算法中經典的算法學習了一下。下面將無約束項優化算法的細節進行描述。為了尊重別人的勞動成果,本文的出處 ...
本文講解的是無約束優化中幾個常見的基於梯度的方法,主要有梯度下降與牛頓方法 BFGS 與 L BFGS 算法。 梯度下降法是基於目標函數梯度的,算法的收斂速度是線性的,並且當問題是病態時或者問題規模較大時,收斂速度尤其慢 幾乎不適用 牛頓法是基於目標函數的二階導數 Hesse 矩陣 的,其收斂速度較快,迭代次數較少,尤其是在最優值附近時,收斂速度是二次的。但牛頓法的問題在於當海森矩陣稠密時,每次迭 ...
2016-08-02 17:04 1 5267 推薦指數:
簡介:最近在看邏輯回歸算法,在算法構建模型的過程中需要對參數進行求解,采用的方法有梯度下降法和無約束項優化算法。之前對無約束項優化算法並不是很了解,於是在學習邏輯回歸之前,先對無約束項優化算法中經典的算法學習了一下。下面將無約束項優化算法的細節進行描述。為了尊重別人的勞動成果,本文的出處 ...
一、BFGS算法 在“優化算法——擬牛頓法之BFGS算法”中,我們得到了BFGS算法的校正公式: 利用Sherman-Morrison公式可對上式進行變換,得到 令,則得到: 二、BGFS算法存在的問題 在BFGS算法中。每次都要 ...
牛頓法 考慮如下無約束極小化問題: $$\min_{x} f(x)$$ 其中$x\in R^N$,並且假設$f(x)$為凸函數,二階可微。當前點記為$x_k$,最優點記為$x^*$。 梯度下降法用的是一階偏導,牛頓法用二階偏導。以標量為例,在當前點進行泰勒二階展開: $$\varphi ...
數據、特征和數值優化算法是機器學習的核心,而牛頓法及其改良(擬牛頓法)是機器最常用的一類數字優化算法,今天就從牛頓法開始,介紹幾個擬牛頓法算法。本博文只介紹算法的思想,具體的數學推導過程不做介紹。 1. 牛頓法 牛頓法的核心思想是”利用函數在當前點的一階導數,以及二階導數,尋找搜尋方向“(回想 ...
歡迎轉載,轉載請注明出處,徽滬一郎。 概要 本文就擬牛頓法L-BFGS的由來做一個簡要的回顧,然后就其在spark mllib中的實現進行源碼走讀。 擬牛頓法 數學原理 代碼實現 L-BFGS算法中使用到的正則化方法 ...
1、二分法(一階導) 二分法是利用目標函數的一階導數來連續壓縮區間的方法,因此這里除了要求 f 在 [a0,b0] 為單峰函數外,還要去 f(x) 連續可微。 (1)確定初始區間的中點 x(0)=(a0+b0)/2 。然后計算 f(x) 在 x(0) 處的一階導數 f'(x ...
一、牛頓法 對於優化函數\(f(x)\),在\(x_0\)處泰勒展開, \[f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+o(\Delta x) \] 去其線性部分,忽略高階無窮小,令\(f(x) = 0\)得: \[x=x_0-\frac{f(x_0)}{f ...
L-BFGS算法比較適合在大規模的數值計算中,具備牛頓法收斂速度快的特點,但不需要牛頓法那樣存儲Hesse矩陣,因此節省了大量的空間以及計算資源。本文主要通過對於無約束最優化問題的一些常用算法總結,一步步的理解L-BFGS算法,本文按照最速下降法 - 牛頓法 - 共軛梯度法 - 擬牛頓法 ...