牛頓法 考慮如下無約束極小化問題: $$\min_{x} f(x)$$ 其中$x\in R^N$,並且假設$f(x)$為凸函數,二階可微。當前點記為$x_k$,最優點記為$x^*$。 梯度下降法用的是一階偏導,牛頓法用二階偏導。以標量為例,在當前點進行泰勒二階展開: $$\varphi ...
牛頓法 考慮如下無約束極小化問題: $$\min_{x} f(x)$$ 其中$x\in R^N$,並且假設$f(x)$為凸函數,二階可微。當前點記為$x_k$,最優點記為$x^*$。 梯度下降法用的是一階偏導,牛頓法用二階偏導。以標量為例,在當前點進行泰勒二階展開: $$\varphi ...
簡介:最近在看邏輯回歸算法,在算法構建模型的過程中需要對參數進行求解,采用的方法有梯度下降法和無約束項優化算法。之前對無約束項優化算法並不是很了解,於是在學習邏輯回歸之前,先對無約束項優化算法中經典的算法學習了一下。下面將無約束項優化算法的細節進行描述。為了尊重別人的勞動成果,本文的出處 ...
一、牛頓法 對於優化函數\(f(x)\),在\(x_0\)處泰勒展開, \[f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+o(\Delta x) \] 去其線性部分,忽略高階無窮小,令\(f(x) = 0\)得: \[x=x_0-\frac{f(x_0)}{f ...
一.簡介 通過前面幾節的介紹,大家可以直觀的感受到:對於大部分機器學習模型,我們通常會將其轉化為一個優化問題,由於模型通常較為復雜,難以直接計算其解析解,我們會采用迭代式的優化手段,用數學語言描述如 ...
牛頓法和擬牛頓法 牛頓法(Newton method)和擬牛頓法(quasi Newton method)是求解無約束最優化問題的常用方法,收斂速度快。牛頓法是迭代算法,每一步需要求解海賽矩陣的逆矩陣,計算比較復雜。擬牛頓法通過正定矩陣近似海賽矩陣的逆矩陣或海賽矩陣,簡化了這一 ...
數據、特征和數值優化算法是機器學習的核心,而牛頓法及其改良(擬牛頓法)是機器最常用的一類數字優化算法,今天就從牛頓法開始,介紹幾個擬牛頓法算法。本博文只介紹算法的思想,具體的數學推導過程不做介紹。 1. 牛頓法 牛頓法的核心思想是”利用函數在當前點的一階導數,以及二階導數,尋找搜尋方向“(回想 ...
一、BFGS算法 在“優化算法——擬牛頓法之BFGS算法”中,我們得到了BFGS算法的校正公式: 利用Sherman-Morrison公式可對上式進行變換,得到 令,則得到: 二、BGFS算法存在的問題 在BFGS算法中。每次都要 ...
特點 相較於: 最優化算法3【擬牛頓法1】 BFGS算法使用秩二矩陣校正hesse矩陣的近似矩陣\(B\),即: \[B_{k+1}=B_k+\alpha\mu_k\mu_k^T+\beta\nu_k\nu_k^T \] 算法分析 將函數在\(x_{k+1}\)處二階展開 ...