有很多,而且分為線性降維和非線性降維,本篇文章主要講解線性降維中的主成分分析法(PCA)降維。顧名思義,就 ...
運用PCA對高維數據進行降維,有一下幾個特點: 數據從高維空間降到低維,因為求方差的緣故,相似的特征會被合並掉,因此數據會縮減,特征的個數會減小,這有利於防止過擬合現象的出現。但PCA並不是一種好的防止過擬合的方法,在防止過擬合的時候,最好是對數據進行正則化 使用降維的方法,使算法的運行速度加快 減少用來存儲數據的內存空間 從x i 到z i 的映射過程中,對訓練數據進行降維,然后對測試數據或驗證 ...
2016-03-30 09:12 0 1808 推薦指數:
有很多,而且分為線性降維和非線性降維,本篇文章主要講解線性降維中的主成分分析法(PCA)降維。顧名思義,就 ...
轉載請聲明出處:http://blog.csdn.net/zhongkelee/article/details/44064401 一、PCA簡介 1. 相關背景 上完陳恩紅老師的《機器學習與知識發現》和季海波老師的《矩陣代數》兩門課之后,頗有體會。最近在做主成分分析和奇異值分解 ...
使用PCA方法對高維的鳶尾花數據(4維3類樣本)進行降維分類,部分鳶尾花數據集如下: View Code 結果如下: ...
數據集中含有太多特征時,需要簡化數據。降維不是刪除部分特征,而是將高維數據集映射到低維數據集,映射后的數據集更簡潔,方便找出對結果貢獻最大的部分特征。 簡化數據的原因: 1、使得數據集更易使用 2、降低很多算法的計算開銷 3、去除噪聲 4、使得結果易懂 PCA:principal ...
PCA要做的事降噪和去冗余,其本質就是對角化協方差矩陣。 一.預備知識 1.1 協方差分析 對於一般的分布,直接代入E(X)之類的就可以計算出來了,但真給你一個具體數值的分布,要計算協方差矩陣,根據這個公式來計算,還真不容易反應過來。網上值得參考的資料也不多,這里用一個 ...
MATLAB實例:PCA降維 作者:凱魯嘎吉 - 博客園 http://www.cnblogs.com/kailugaji/ 1. iris數據 5.1,3.5,1.4,0.2,1 4.9,3.0,1.4,0.2,1 4.7,3.2,1.3,0.2,1 ...
PCA 主成分分析方法,LDA 線性判別分析方法,可以認為是有監督的數據降維。下面的代碼分別實現了兩種降維方式: 結果如下 ...
Principal Component Analysis 算法優缺點: 優點:降低數據復雜性,識別最重要的多個特征 缺點:不一定需要,且可能損失有用的信息 適用數據類型:數值型數據 算法思想: 降維的好處: 使得數據集更易使用 降低 ...