上篇文章介紹了最小二乘法的理論與證明、計算過程,這里給出兩個最小二乘法的計算程序代碼; #Octave代碼 clear all;close all; % 擬合的數據集 x = [2;6;9;13]; y = [4;8;12;21]; % 數據長度 N = length(x); % 3 %% 計算x ...
博文參考了以下兩位博主的文章:http: blog.csdn.net lu article details ,http: blog.csdn.net viewcode article details 回歸問題的前提: 收集的數據 假設的模型,即一個函數,這個函數里含有未知的參數,通過學習,可以估計出參數。然后利用這個模型去預測 分類新的數據。 . 線性回歸 假設 特征 和 結果 都滿足線性。即不大 ...
2016-03-03 19:18 0 4995 推薦指數:
上篇文章介紹了最小二乘法的理論與證明、計算過程,這里給出兩個最小二乘法的計算程序代碼; #Octave代碼 clear all;close all; % 擬合的數據集 x = [2;6;9;13]; y = [4;8;12;21]; % 數據長度 N = length(x); % 3 %% 計算x ...
單變量線性回歸 在這個文檔中將會介紹單變量線性回歸模型的建立和公式推倒,通過實例的代碼實現算法來加深理解 一.模型推導 1-1 線性回歸模型 設定樣本描述為 \[x=(x_1;x_2;...;x_d) \] 預測函數為 \[f(\boldsymbol x ...
目錄 一、線性回歸 二、最小二乘法 三、最小二乘法(向量表示) 四、Python實現 一、線性回歸 給定由n個屬性描述的樣本x=(x0, x1, x2, ... , xn),線性模型嘗試學習一個合適的樣本屬性的線性組合來進行預測任務,如:f(x ...
線性回歸:是利用數理統計中回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關系的一種統計分析方法。 梯度下降,http://www.cnblogs.com/hgl0417/p/5893930.html 最小二乘: 對於一般訓練集 ...
線性回歸之最小二乘法 1.最小二乘法的原理 最小二乘法的主要思想是通過確定未知參數\(\theta\)(通常是一個參數矩陣),來使得真實值和預測值的誤差(也稱殘差)平方和最小,其計算公式為\(E=\sum_{i=0}^ne_i^2=\sum_{i=1}^n(y_i-\hat{y_i ...
回歸: 所以從這里我們開始將介紹線性回歸的另一種更方便求解多變量線性回歸的方式:最小二乘法矩陣形 ...
相信學過數理統計的都學過線性回歸(linear regression),本篇文章詳細將講解單變量線性回歸並寫出使用最小二乘法(least squares method)來求線性回歸損失函數最優解的完整過程,首先推導出最小二乘法,后用最小二乘法對一個簡單數據集進行線性回歸擬合; 線性回歸 ...
個人記錄,大部分摘自概率論與數理統計 一元線性回歸模型 設y與x間有相關關系,稱x為自變量,y為因變量,我們只考慮在x是可控變量,只有y是隨機變量,那么他們之間的相關關系可以表示為 y=f(x)+ε 其中ε是隨機誤差,一般假設ε~N(0,σ2)。由於ε是隨機變量,導致y也是隨機變量 ...