Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applications in R 的系列讀書筆記,作為本人的一份學習總結,也希望和朋友們進行交流學習。 該書 ...
Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applications in R 的系列讀書筆記,作為本人的一份學習總結,也希望和朋友們進行交流學習。 該書是The Elements of Statistical Learning 的R語言簡明版,包含了對算法的 ...
2015-10-07 21:27 1 4470 推薦指數:
Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applications in R 的系列讀書筆記,作為本人的一份學習總結,也希望和朋友們進行交流學習。 該書 ...
Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applications in R 的系列讀書筆記,作為本人的一份學習總結,也希望和朋友們進行交流學習。 該書 ...
前文:Lasso linear model實例 | Proliferation index | 評估單細胞的增殖指數 參考:LASSO回歸在生物醫學資料中的簡單實例 - 生信技能樹 Linear least squares, Lasso,ridge regression有何本質區別? 你應該 ...
對模型參數進行限制或者規范化能將一些參數朝着0收縮(shrink)。使用收縮的方法的效果提升是相當好的,嶺回歸(ridge regression,后續以ridge代稱),lasso和彈性網絡(elastic net)是常用的變量選擇的一般化版本。彈性網絡實際上是結合了嶺回歸和lasso的特點 ...
目錄 線性回歸——最小二乘 Lasso回歸和嶺回歸 為什么 lasso 更容易使部分權重變為 0 而 ridge 不行? References 線性回歸很簡單,用線性函數擬合數據,用 mean square error (mse) 計算損失(cost ...
一、嶺回歸模型 嶺回歸其實就是在普通最小二乘法回歸(ordinary least squares regression)的基礎上,加入了正則化參數λ。 二、如何調用 alpha:就是上述正則化參數λ;fit_intercept:默認 ...
線性回歸 Ridge 回歸 (嶺回歸) Ridge 回歸用於解決兩類問題:一是樣本少於變量個數,二是變量間存在共線性 RidgeCV:多個阿爾法,得出多個對應最佳的w,然后得到最佳的w及對應的阿爾法 Lasso 監督分類 估計稀疏系數的線性模型 ...
Classification 此博文是 An Introduction to Statistical Learning with Applications in R 的系列讀書筆記,作為本人的一份學習總結,也希望和朋友們進行交流學習。 該書是The Elements ...