頻繁項集的產生 格結構(lattice structure)常常用來表示所有可能的項集。 發現頻繁項集的一個原始方法是確定格結構中每個候選項集的支持度。但是工作量比較大。另外有幾種方法可以降低產生頻繁項集的計算復雜度。 減少候選項集的數目。如先驗(apriori)原理,是一種不用 ...
規則產生 忽略那些前件和后件為空的規則,每個頻繁k項集能夠產生 k 個關聯規則。將頻繁項集Y划分為兩個非空子集X和Y X,使得 X to Y X 能滿足置信度閾值,就可以得到滿足條件的規則。 在計算規則的置信度時並不需要再次掃描事務數據集,因為產生規則的頻繁項集和它們的子集也都是頻繁項集,我們在提取頻繁項集時,已經計算過它們的支持度計數,因而不需要再掃描所有的數據集。 基於置信度的剪枝 置信度不像 ...
2015-08-18 22:20 0 4091 推薦指數:
頻繁項集的產生 格結構(lattice structure)常常用來表示所有可能的項集。 發現頻繁項集的一個原始方法是確定格結構中每個候選項集的支持度。但是工作量比較大。另外有幾種方法可以降低產生頻繁項集的計算復雜度。 減少候選項集的數目。如先驗(apriori)原理,是一種不用 ...
1.關聯規則分析的定義 關聯分析(Association Analysis)用於發現隱藏在大型數據集中的令人感興趣的聯系。聯系的表示方式一般為關聯規則或頻繁項集,例:{尿布}→{啤酒}。 2.關聯規則分析的基本概念 項集:項的集合稱為項集。一個包含k個數據項的項集就稱為k−項集。 項集 ...
在各種數據挖掘算法中,關聯規則挖掘算是比較重要的一種,尤其是受購物籃分析的影響,關聯規則被應用到非常多實際業務中,本文對關聯規則挖掘做一個小的總結。 首先,和聚類算法一樣,關聯規則挖掘屬於無監督學習方法,它描寫敘述的是在一個事物中物品間同一時候出現的規律的知識模式,現實生活中 ...
放在尿不濕附近,將有很大概率提高啤酒的銷售量。實踐證明的確如此。 其實,這種通過研究已經產生的數 ...
淺談數據挖掘中的關聯規則挖掘 數據挖掘是指以某種方式分析數據源,從中發現一些潛在的有用的信息,所以數據挖掘又稱作知識發現,而關聯規則挖掘則是數據挖掘中的一個很重要的課題,顧名思義,它是從數據背后發現事物之間可能存在的關聯或者聯系。舉個最簡單的例子 ...
在數據挖掘的知識模式中,關聯規則模式是比較重要的一種。關聯規則的概念由Agrawal、Imielinski、Swami 提出,是數據中一種簡單但很實用的規則。關聯規則模式屬於描述型模式,發現關聯規則的算法屬於無監督學習的方法。 一、關聯規則的定義和屬性 考察一些涉及許多物品的事務:事務 ...
淺談數據挖掘中的關聯規則挖掘 數據挖掘是指以某種方式分析數據源,從中發現一些潛在的有用的信息,所以數據挖掘又稱作知識發現,而關聯規則挖掘則是數據挖掘中的一個很重要的課題,顧名思義,它是從數據背后發現事物之間可能存在的關聯或者聯系。舉個最簡單的例子 ...
許多商業企業運營中的大量數據,通常稱為購物籃事務(market basket transaction)。表中每一行對應一個事務,包含一個唯一標識TID。 利用關聯分析的方法可以發現聯系如關聯規則或頻繁項集。 關聯分析需要處理的關鍵問題: 從大型事務數據集中發現模式可能在計算上要付出很高 ...