From: http://blog.csdn.net/cyxlzzs/article/details/7416491 ...
public class KMeansCluster private int k 簇的個數 private int num 迭代次數 private List lt double gt datas 原始樣本集 private String address 樣本集路徑 private List lt point gt data new ArrayList lt point gt private Ab ...
2015-06-27 14:24 0 4964 推薦指數:
From: http://blog.csdn.net/cyxlzzs/article/details/7416491 ...
java簡單實現聚類算法 第一個版本有一些問題,,(一段廢話biubiu。。。),,我其實每次迭代之后(就是達不到收斂標准之前,聚類中心的誤差達不到指定小的時候),雖然重新算了聚類中心,但是其實我的那些點並沒有變,可是這個程序不知道咋回事每次都把我原先隨機指定的聚類中心給變成了我算 ...
K-means算法是硬聚類算法,是典型的基於原型的目標函數聚類方法的代表,它是數據點到原型的某種距離作為優化的目標函數,利用函數求極值的方法得到迭代運算的調整規則。K-means算法以歐式距離作為相似度測度,它是求對應某一初始聚類中心向量V最優分類,使得評價指標J最小。算法采用誤差平方和准則函數 ...
參考了Andrew Ng的Machine Learning Assignment(https://github.com/rieder91/MachineLearning/blob/mas ...
) K-Means ++ 算法 k-means++算法選擇初始seeds的基本思想就是:初始的聚類中 ...
說來這個聚類算法的實現是數據挖掘課程的第三次作業了,前兩次的作業都是利用別人的軟件,很少去自己實現一個算法,第一個利用sqlserver2008的商業智能工具實現一個數據倉庫,數據處理,倉庫模型的建立繞,維度表,事實表的創建,不過考試的時候應該也會有數據倉庫常用模型的建立吧;第二次利用 ...
聚類算法與K-means實現 一、聚類算法的數學描述: 區別於監督學習的算法(回歸,分類,預測等),無監督學習就是指訓練樣本的 label 未知,只能通過對無標記的訓練樣本的學習來揭示數據的內在規律和性質。無監督學習任務中研究最多的就是聚類算法(clustering)。我們假定一個樣 ...
一、K-Means算法原理 二、Hadoop實現K-Means的做法 1、偽代碼 (1)主要參數 輸入: 參數0--存儲樣本數據的文本文件inputfile; 參數1--存儲樣本數據的SequenceFile文件inputPath ...