原文:深度學習入門教程UFLDL學習實驗筆記一:稀疏自編碼器

UFLDL即 unsupervised feature learning amp deep learning 。這是斯坦福網站上的一篇經典教程。顧名思義,你將在這篇這篇文章中學習到無監督特征學習和深度學習的主要觀點。 UFLDL全文出處在這:http: ufldl.stanford.edu wiki index.php UFLDL E E A B,本文為本人原創,參考了UFLDL的教程,是我自己個 ...

2015-05-12 21:37 0 10406 推薦指數:

查看詳情

深度學習UFLDL教程筆記1 稀疏自編碼器

稀疏自編碼器學習結構: 稀疏自編碼器Ⅰ: 神經網絡 反向傳導算法 梯度檢驗與高級優化 稀疏自編碼器Ⅱ: 自編碼算法與稀疏性 可視化自編碼器訓練結果 Exercise: Sparse Autoencoder 自編碼算法與稀疏性 已經討論了神經網絡在有 ...

Sat Nov 29 05:06:00 CST 2014 0 3397
深度學習UFLDL教程筆記1 稀疏自編碼器

稀疏自編碼器學習結構: 稀疏自編碼器Ⅰ: 神經網絡 反向傳導算法 梯度檢驗與高級優化 稀疏自編碼器Ⅱ: 自編碼算法與稀疏性 可視化自編碼器訓練結果 Exercise: Sparse Autoencoder 稀疏自編碼器Ⅰ這部分先簡單講述神經網絡的部分,它和稀疏 ...

Tue Nov 25 00:52:00 CST 2014 0 2676
深度學習入門教程UFLDL學習實驗筆記二:使用向量化對MNIST數據集做稀疏自編碼

今天來做UFLDL的第二個實驗,向量化。我們都知道,在matlab里面基本上如果使用for循環,程序是會慢的一逼的(可以說基本就運行不下去)所以在這呢,我們需要對程序進行向量化的處理,所謂向量化就是將matlab里面所有的for循環用矩陣運算的方法實現,在這里呢,因為之前的實驗我已經是按照向量化 ...

Thu May 14 00:59:00 CST 2015 0 4765
UFLDL深度學習筆記 (一)反向傳播與稀疏自編碼

UFLDL深度學習筆記 (一)基本知識與稀疏自編碼 前言   近來正在系統研究一下深度學習,作為新入門者,為了更好地理解、交流,准備把學習過程總結記錄下來。最開始的規划是先學習理論推導;然后學習一兩種開源框架;第三是進階調優、加速技巧。越往后越要帶着工作中的實際問題去做,而不能是空中樓閣式 ...

Sat Jun 24 20:48:00 CST 2017 0 3718
深度學習入門教程UFLDL學習實驗筆記三:主成分分析PCA與白化whitening

主成分分析與白化是在做深度學習訓練時最常見的兩種預處理的方法,主成分分析是一種我們用的很多的降維的一種手段,通過PCA降維,我們能夠有效的降低數據的維度,加快運算速度。而白化就是為了使得每個特征能有同樣的方差,降低相鄰像素的相關性。 主成分分析PCA PCA算法可以將輸入向量轉換為一個維數低 ...

Fri May 22 02:48:00 CST 2015 0 2310
深度學習筆記(五) 棧式自編碼器

部分內容來自:http://ufldl.stanford.edu/wiki/index.php/%E6%A0%88%E5%BC%8F%E8%87%AA%E7%BC%96%E7%A0%81%E7%AE%97%E6%B3%95 棧式自編碼神經網絡是一個由多層稀疏自編碼器組成的神經網絡,其前一層自編碼器 ...

Fri Jun 16 00:53:00 CST 2017 0 1367
深度學習自編碼器 示例

最近學習DeepLearning, 在網上找到了一個自編碼器的代碼,運行以下,還比較好用,分享如下。由於代碼出處無處可考,故不予特殊說明。 以上代碼為 pytorch 運行效果圖: ...

Wed Oct 17 16:52:00 CST 2018 0 709
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM