決策樹 與SVM類似,決策樹在機器學習算法中是一個功能非常全面的算法,它可以執行分類與回歸任務,甚至是多輸出任務。決策樹的算法非常強大,即使是一些復雜的問題,也可以良好地擬合復雜數據集。決策樹同時也是隨機森林的基礎組件,隨機森林在當前是最強大的機器學習算法之一。 在這章我們會先討論如何使用 ...
起源:Boosting算法 Boosting算法的目的是每次基於全部數據集,通過使用同一種分類器不同的抽取參數方法 如決策樹,每次都可以抽取不同的特征維度來剖分數據集 訓練一些不同弱分類器 單次分類錯誤率 gt . ,然后將其組合起來,綜合評估 默認認為每個分類器權重等價 進行分類。 AdaBoost算法進行了對其進行了改進。 一 每次訓練分類器時,給予每條數據用於計算誤差的不同權重D。 二 每 ...
2015-02-22 01:58 0 2427 推薦指數:
決策樹 與SVM類似,決策樹在機器學習算法中是一個功能非常全面的算法,它可以執行分類與回歸任務,甚至是多輸出任務。決策樹的算法非常強大,即使是一些復雜的問題,也可以良好地擬合復雜數據集。決策樹同時也是隨機森林的基礎組件,隨機森林在當前是最強大的機器學習算法之一。 在這章我們會先討論如何使用 ...
回歸 決策樹也可以用於執行回歸任務。我們首先用sk-learn的DecisionTreeRegressor類構造一顆回歸決策樹,並在一個帶噪聲的二次方數據集上進行訓練,指定max_depth=2: 下圖是這棵樹的結果: 這棵樹看起來與之前構造的分類樹類似。主要 ...
呢?就是依據數據集的不同的特征在決定結果時所占的比重來划分數據集。就是要對每一個特征值都構建決策樹,而且 ...
參考資料(要是對於本文的理解不夠透徹,必須將以下博客認知閱讀): 1. https://zhuanlan.zhihu.com/p/86263786 2.https://blog.csdn.net/ ...
上一講主要利用不同模型計算出來的g。採用aggregation來實現更好的g。假設還沒有做出來g。我們能夠採用bootstrap的方法來做出一系列的“diversity”的data出來。然后訓練 ...
在現實生活中,我們會遇到各種選擇,不論是選擇男女朋友,還是挑選水果,都是基於以往的經驗來做判斷。如果把判斷背后的邏輯整理成一個結構圖,你會發現它實際上是一個樹狀圖,這就是我們今天要講的決策樹。 決策樹的工作原理 決策樹基本上就是把我們以前的經驗總結出來。如果我們要出門打籃球,一般會根據“天氣 ...
分類決策樹的概念和算法比較好理解,並且這方面的資料也很多。但是對於回歸決策樹的資料卻比較少,西瓜書上也只是提了一下,並沒有做深入的介紹,不知道是不是因為回歸樹用的比較少。實際上網上常見的房價預測的案例就是一個應用回歸樹的很好的案例,所以我覺得至少有必要把回歸樹的概念以及算法弄清楚 ...
決策樹的目標是從一組樣本數據中,根據不同的特征和屬性,建立一棵樹形的分類結構。 決策樹的學習本質上是從訓練集中歸納出一組分類規則,得到與數據集矛盾較小的決策樹,同時具有很好的泛化能力。決策樹學習的損失函數通常是正則化的極大似然函數,通常采用啟發式方法,近似求解這一最優化問題。 算法原理 ...