詳細代碼我已上傳到github:click me 一、 實驗要求 在 Spark2.3 平台上實現 Apriori 頻繁項集挖掘的並行化算法。要求程序利用 Spark 進行並行計算。 二、算法設計 2.1 設計思路 變量定義 D為數據集,設Lk是k ...
大家好,下面為大家分享的實戰案例是K 頻繁相機挖掘並行化算法。相信從事數據挖掘相關工作的同學對頻繁項集的相關算法 比較了解,這里我們用Apriori算法及其優化算法實現。 首先說一下實驗結果。對於 G, W條記錄的數據,我們用了 秒就算完了 頻繁項集的挖掘。應該還算不錯。 給出題目: 本題的較第四題難度更大。我們在寫程序的時候一定要注意寫出的程序是並行化的,而不是只在client上運行的單機程序 ...
2015-01-02 14:27 4 4121 推薦指數:
詳細代碼我已上傳到github:click me 一、 實驗要求 在 Spark2.3 平台上實現 Apriori 頻繁項集挖掘的並行化算法。要求程序利用 Spark 進行並行計算。 二、算法設計 2.1 設計思路 變量定義 D為數據集,設Lk是k ...
我們是通過算法來找到數據之間的關聯規則(兩個物品之間可能存在很強的相關關系)和頻繁項集(經常出現在一起的物品的集合)。 我們是通過支持度和置信度來定義關聯規則和頻繁項集的 一個項集支持度是指在所有數據集中出現這個項集的概率,項集可能只包含一個選項,也有可能是多個選項的組合。 置信 ...
計算頻繁項集: 首先生成一個數據集 def loadDataSet(): return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]] def ...
頻繁模式和對應的關聯或相關規則在一定程度上刻畫了屬性條件與類標號之間的有趣聯系,因此將關聯規則挖掘用於分類也會產生比較好的效果。關聯規則就是在給定訓練項集上頻繁出現的項集與項集之間的一種緊密的聯系。其中“頻繁”是由人為設定的一個閾值即支持度 (support)來衡量,“緊密”也是由人為設定的一個 ...
|A) 頻繁k項集:假設項集I的支持度滿足提前定義的最小支持度閾值。則稱I為頻繁項集,包括k個項的項 ...
GPU計算的目的即是計算加速。相比於CPU,其具有以下三個方面的優勢: l 並行度高:GPU的Core數遠遠多於CPU(如G100 GPU有240個Cores),從而GPU的任務並發度也遠高於CPU; l 內存帶寬高:GPU的內存系統帶寬幾十倍高於CPU,如CPU (DDR-400)帶寬 ...
基礎知識: 用戶 薯片(A) 可樂(B) 鉛筆(C) 羽毛球(D) 洗衣液(E) 1 √ ...
Apriori和fp-growth是頻繁項集(frequent itemset mining)挖掘中的兩個經典算法,雖然都是十幾年前的,但是理解這兩個算法對數據挖掘和學習算法都有很大好處。在理解這兩個算法之前,應該先了解頻繁項集挖掘是做什么用的。 頻繁項集挖掘是關聯規則挖掘中的首要的子任務 ...