原文:神經網絡中的參數的求解:前向和反向傳播算法

神經網絡最基本的知識可以參考神經網絡基本知識,基本的東西說的很好了,然后這里講一下神經網絡中的參數的求解方法。 注意前一次的各單元不需要與后一層的偏置節點連線,因為偏置節點不需要有輸入也不需要sigmoid函數得到激活值,或者認為激活值始終是 . 一些變量解釋: 標上 的圓圈被稱為偏置節點,也就是截距項. 本例神經網絡有參數 ,其中 下面的式子中用到 是第 層第 單元與第 層第 單元之間的聯接參數 ...

2014-12-30 14:09 0 13623 推薦指數:

查看詳情

神經網絡傳播反向傳播

神經網絡 神經網絡可以理解為一個輸入x到輸出y的映射函數,即f(x)=y,其中這個映射f就是我們所要訓練的網絡參數w,我們只要訓練出來了參數w,那么對於任何輸入x,我們就能得到一個與之對應的輸出y。只要f不同,那么同一個x就會產生不同的y,我們當然是想要獲得最符合真實數據的y,那么我們就要訓練 ...

Wed Sep 16 04:50:00 CST 2020 0 675
循環神經網絡(RNN)模型與反向傳播算法

    在前面我們講到了DNN,以及DNN的特例CNN的模型和反向傳播算法,這些算法都是向反饋的,模型的輸出和模型本身沒有關聯關系。今天我們就討論另一類輸出和模型間有反饋的神經網絡:循環神經網絡(Recurrent Neural Networks ,以下簡稱RNN),它廣泛的用於自然語言處理 ...

Tue Mar 07 03:57:00 CST 2017 166 118160
詳解神經網絡傳播反向傳播(從頭推導)

詳解神經網絡傳播反向傳播本篇博客是對Michael Nielsen所著的《Neural Network and Deep Learning》第2章內容的解讀,有興趣的朋友可以直接閱讀原文Neural Network and Deep Learning。   對神經網絡有些了解的人 ...

Sun Nov 14 07:22:00 CST 2021 0 179
神經網絡向后向傳播算法

神經網絡的代價函數與后向傳播算法 代價(損失)函數 ​ 依照慣例,我們仍然首先定義一些我們需要的變量: L:網絡的總層數,\(s_l​\):在第l層所有單元(units)的數目(不包含偏置單元),k:輸出單元(類)的數目 ​ 回想一下,在神經網絡,我們可能有很多輸出節點 ...

Tue Jun 20 03:12:00 CST 2017 0 2382
神經網絡反向傳播算法實現

1 神經網絡模型 以下面神經網絡模型為例,說明神經網絡中正向傳播反向傳播過程及代碼實現 1.1 正向傳播 (1)輸入層神經元\(i_1,i_2\),輸入層到隱藏層處理過程 \[HiddenNeth_1 = w_1i_1+w_2i_2 + b_1 ...

Thu Jul 04 03:13:00 CST 2019 0 1337
神經網絡傳播FP和反向傳播BP

1 神經網絡 神經網絡就是將許多個單一“神經元”聯結在一起,這樣,一個“神經元”的輸出就可以是另一個“神經元”的輸入。例如,下圖就是一個簡單的神經網絡: 我們使用圓圈來表示神經網絡的輸入,標上“”的圓圈被稱為偏置節點,也就是截距項。神經網絡最左邊的一層叫做輸入層,最右 ...

Sat Jul 28 00:52:00 CST 2018 0 2024
神經網絡傳播反向傳播公式 詳細推導

神經網絡傳播反向傳播公式詳細推導 本篇博客是對Michael Nielsen所著的《Neural Network and Deep Learning》第2章內容的解讀,有興趣的朋友可以直接閱讀原文Neural Network and Deep Learning。   對神經網絡有些了解 ...

Tue Mar 24 08:06:00 CST 2020 0 1508
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM