深度學習中的優化問題通常指的是:尋找神經網絡上的一組參數θ,它能顯著地降低代價函數J(θ)。針對此類問題,研究人員提出了多種優化算法,Sebastian Ruder 在《An overview of gradient descent optimizationalgorithms》(鏈接 ...
在深度學習過程中經常會聽到 優化 算法雲雲,優化算法即通過迭代的方法計算目標函數的最優解,為什么要用到優化算法呢 如果是凸優化問題,如果數據量特別大,那么計算梯度非常耗時,因此會選擇使用迭代的方法求解,迭代每一步計算量小,且比較容易實現 對於非凸問題,只能通過迭代的方法求解,每次迭代目標函數值不斷變小,不斷逼近最優解 因此優化問題的重點是使用何種迭代方法進行迭代,即求迭代公式。下面簡單介紹幾種優化 ...
2014-12-15 16:58 0 4083 推薦指數:
深度學習中的優化問題通常指的是:尋找神經網絡上的一組參數θ,它能顯著地降低代價函數J(θ)。針對此類問題,研究人員提出了多種優化算法,Sebastian Ruder 在《An overview of gradient descent optimizationalgorithms》(鏈接 ...
目錄 mini-batch 指數加權平均 優化梯度下降法:momentum、RMSprop、Adam 學習率衰減 局部最優問題 一、mini-batch mini-batch:把訓練集划分成小點的子集 表示法 $x ...
前言 以下內容是個人學習之后的感悟,轉載請注明出處~ Mini-batch梯度下降法 見另一篇文章:梯度下降法。 指數加權平均 其原理如下圖所示,以每天的溫度為例,每天的溫度加權平均值等於β乘以前一天的溫度加權平均值,再加上(1-β)乘以 ...
。 這里介紹比較常用的小批量梯度下降,以及自適應調整學習率和梯度方向優化的兩種算法。 一、小批量梯度 ...
,最后能夠保證收斂於極值點(凸函數收斂於全局極值點,非凸函數可能會收斂於局部極值點) 缺點:每次學習時間過 ...
在上一篇文章中 深度學習中的優化方法(一) - ZhiboZhao - 博客園 (cnblogs.com) 我們主要講到了一維函數 \(f(x):R \rightarrow R\) 的優化方法,在實際情況中,待優化的函數往往是多維的 \(f(x):R^{n} \rightarrow R ...
寫在前面:梯度下降法是深度學習優化的基礎,因此本文首先探討一維優化算法,然后擴展到多維。本文根據《最優化導論》(孫志強等譯)的內容整理而來,由於筆者水平和精力有限,在此只是在簡單層面做一個理解,如果要追求更嚴謹的數學理論,請大家參考相關書籍。在本文中,我們討論目標函數為一元單值函數 \(f:R ...
本文參考自:SGD、Momentum、RMSprop、Adam區別與聯系 上一篇博客總結了一下隨機梯度下降、mini-batch梯度下降和batch梯度下降之間的區別,這三種都屬於在Loss這個level的區分,並且實際應用中也是mini-batch梯度下降應用的比較多。為了在實際應用中彌補這種 ...