原文:奇異值分解(SVD)和簡單圖像壓縮

SVD Singular Value Decomposition,奇異值分解 算法優缺點: 優點:簡化數據,去除噪聲,提高算法結果 缺點:數據的轉換可能難於理解 適用數據類型:數值型數據 算法思想: 很多情況下,數據的一小部分包含了數據的絕大部分信息,線性代數中有很多矩陣的分解技術可以將矩陣表示成新的易於處理的形式,不同的方法使用與不同的情況。最常見的就是SVD,SVD將數據分成三個矩陣U mm ...

2014-12-12 00:06 0 4923 推薦指數:

查看詳情

利用奇異值分解(SVD)進行圖像壓縮-python實現

首先要聲明,圖片的算法有很多,如JPEG算法,SVD對圖片的壓縮可能並不是最佳選擇,這里主要說明SVD可以降維 相對於PAC(主成分分析),SVD奇異值分解)對數據的列和行都進行了降維,左奇異矩陣可以用於行數的壓縮。相對的,右奇異矩陣可以用於列數即特征維度的壓縮,也就是我們的PCA降維。一張 ...

Sat Dec 22 03:06:00 CST 2018 0 602
奇異值分解SVD

0 - 特征分解(EVD) 奇異值分解之前需要用到特征分解,回顧一下特征分解。 假設$A_{m \times m}$是一個是對稱矩陣($A=A^T$),則可以被分解為如下形式, $$A_{m\times m}=Q_{m\times m}\Sigma_{m\times m} Q_{m ...

Sun Oct 20 22:57:00 CST 2019 0 404
奇異值分解SVD

奇異值分解   特征分解是一個提取矩陣特征很不錯的方法,但是它只是對方陣而言的,在現實的世界中,我們看到的大部分矩陣都不是方陣。  奇異值分解基本定理:若 $ A$ 為 $ m \times n$ 實矩陣, 則 $ A$ 的奇異值分解存在   $A=U \Sigma V^{T ...

Sun Oct 03 00:35:00 CST 2021 1 150
奇異值分解(SVD)

奇異值分解(SVD) 特征與特征向量 對於一個實對稱矩陣\(A\in R^{n\times n}\),如果存在\(x\in R^n\)和\(\lambda \in R\)滿足: \[\begin{align} Ax=\lambda x \end{align} \] 則我們說 ...

Mon Nov 08 17:47:00 CST 2021 0 122
奇異值分解SVD

文檔鏈接:http://files.cnblogs.com/files/bincoding/%E5%A5%87%E5%BC%82%E5%80%BC%E5%88%86%E8%A7%A3.zip 強大的矩陣奇異值分解(SVD)及其應用 版權聲明: 本文由LeftNotEasy發布 ...

Wed May 24 00:01:00 CST 2017 0 1718
python——矩陣的奇異值分解,對圖像進行SVD

矩陣SVD   奇異值分解(Singular Value Decomposition)是一種重要的矩陣分解方法,可以看做是對方陣在任意矩陣上的推廣。Singular的意思是突出的,奇特的,非凡的,按照這樣的翻譯似乎也可以叫做矩陣的優分解。   假設矩陣A是一個m*n階的實矩陣,則存在一個分解 ...

Wed Apr 24 04:58:00 CST 2019 0 2502
降維之奇異值分解(SVD)

看了幾篇關於奇異值分解(Singular Value Decomposition,SVD)的博客,大部分都是從坐標變換(線性變換)的角度來闡述,講了一堆坐標變換的東西,整了一大堆圖,試圖“通俗易懂”地向讀者解釋清楚這個矩陣分解方法。然而這個“通俗易懂”到我這就變成了“似懂非懂”,這些漂亮的圖可把 ...

Fri May 03 05:57:00 CST 2019 0 2125
矩陣奇異值分解(SVD)及其應用

前言: 上一次寫了關於PCA與LDA的文章,PCA的實現一般有兩種,一種是用特征分解去實現的,一種是用奇異值分解去實現的。在上篇文章中便是基於特征分解的一種解釋。特征奇異在大部分人的印象中,往往是停留在純粹的數學計算中。而且線性代數或者矩陣論里面,也很少講 ...

Thu Sep 13 04:09:00 CST 2018 2 4026
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM