這種情況:我們可以很容易直接得出P(A|B),P(B|A)則很難直接得出,但我們更關心P(B|A),貝 ...
注: 本文是對 IPython Interactive Computing and Visualization Cookbook 一書中第七章 Introduction to statistical data analysis in Python frequentist and Bayesian methods 的簡單翻譯和整理,這部分內容主要將對統計學習中的頻率論方法和貝葉斯統計方法進行介紹。 ...
2014-12-09 19:50 0 8887 推薦指數:
這種情況:我們可以很容易直接得出P(A|B),P(B|A)則很難直接得出,但我們更關心P(B|A),貝 ...
目錄 貝葉斯公式 極大似然估計 貝葉斯估計 朴素貝葉斯算法 頻率 VS 概率 貝葉斯公式 貝葉斯公式: \[P(A|B)=\frac{P(B|A)P(A)}{P(B)} \] 在\(B\)出現的前提下\(A\)出現的概率 ...
從貝葉斯方法談到貝葉斯網絡 0 引言 其實。介紹貝葉斯定理、貝葉斯方法、貝葉斯判斷的資料、書籍不少,比方《數理統計學簡史》,以及《統計決策論及貝葉斯分析 James O.Berger著》等等,然介紹貝葉斯網絡 ...
1 貝葉斯方法 長久以來,人們對一件事情發生或不發生的概率,只有固定的0和1,即要么發生,要么不發生,從來不會去考慮某件事情發生的概率有多大,不發生的概率又是多大。而且概率雖然未知,但最起碼是一個確定的值。比如如果問那時的人們一個問題:“有一個袋子,里面裝着若干個白球和黑球,請問從袋子中 ...
算法雜貨鋪——分類算法之貝葉斯網絡(Bayesian networks) 2.1、摘要 在上一篇文章中我們討論了朴素貝葉斯分類。朴素貝葉斯分類有一個限制條件,就是特征屬性必須有條件獨立或基本獨立(實際上在現實應用中幾乎不可能做到完全獨立)。當這個條件 ...
1.公式 上式中左邊D是需要預測的測試數據屬性,h是需要預測的類;右邊式子分子是屬性的條件概率和類別的先驗概率,可以從統計訓練數據中得到,分母對於所有實例都一樣,可以不考慮,所有只需 ,返回最大 ...
部分圖為手寫,由於本人字很丑,望見諒,只是想把PRML書的一些部分總結出來,給有需要的人看,希望能幫到一些人理解吧。 下一篇,我將繼續介紹本章內容8.2,條件獨立 部分圖為手寫,由於本人字很丑,望見諒,只是想把PRML書的一些部分總結出來,給有需要的人看,希望能幫到一些人理解吧。 ...
貝葉斯平滑方法及其代碼實現 1. 背景介紹 廣告形式: 互聯網廣告可以分為以下三種: 1)展示廣告(display ad) 2)搜索廣告(sponsored search ad) 3)上下文廣告(contextual ad) 競價模式 ...