朴素貝葉斯是一種十分簡單的分類算法,稱其朴素是因為其思想基礎的簡單性,就文本分類而言,他認為詞袋中的兩兩詞之間的關系是相互獨立的,即一個對象的特征向量中的每個維度都是互相獨立的。這是朴素貝葉斯理論的思想基礎。 朴素貝葉斯分類的正式定義: 設x={}為一個待分類項,而每個a為x的一個特征 ...
朴素貝葉斯 算法優缺點 優點:在數據較少的情況下依然有效,可以處理多類別問題 缺點:對輸入數據的准備方式敏感 適用數據類型:標稱型數據 算法思想: 朴素貝葉斯比如我們想判斷一個郵件是不是垃圾郵件,那么我們知道的是這個郵件中的詞的分布,那么我們還要知道:垃圾郵件中某些詞的出現是多少,就可以利用貝葉斯定理得到。朴素貝葉斯分類器中的一個假設是:每個特征同等重要 函數 loadDataSet 創建數據集 ...
2014-11-17 00:28 2 6871 推薦指數:
朴素貝葉斯是一種十分簡單的分類算法,稱其朴素是因為其思想基礎的簡單性,就文本分類而言,他認為詞袋中的兩兩詞之間的關系是相互獨立的,即一個對象的特征向量中的每個維度都是互相獨立的。這是朴素貝葉斯理論的思想基礎。 朴素貝葉斯分類的正式定義: 設x={}為一個待分類項,而每個a為x的一個特征 ...
朴素貝葉斯算法要理解一下基礎: 【朴素:特征條件獨立 貝葉斯:基於貝葉斯定理】 1朴素貝葉斯的概念【聯合概率分布、先驗概率、 條件概率**、全概率公式】【條件獨立性假設、】 極大似然估計 2優缺點 【優點: 分類效率穩定;對缺失數據不敏感,算法比較簡單 ...
前不久簡單學習了python,寫了一個朴素貝葉斯算法: 這是數據挖掘書本上的一個例子的運行結果: ...
前面一個博客我們用Scikit-Learn實現了中文文本分類的全過程,這篇博客,着重分析項目最核心的部分分類算法:朴素貝葉斯算法以及KNN算法的基本原理和簡單python實現。 3.1 貝葉斯公式的推導 簡單介紹一下什么是貝葉斯: 讓我們從一個故事 ...
概念: 貝葉斯定理:貝葉斯理論是以18世紀的一位神學家托馬斯.貝葉斯(Thomas Bayes)命名。通常,事件A在事件B(發生)的條件下的概率,與事件B在事件A(發生)的條件下的概率是不一樣的;然而,這兩者是有確定的關系的,貝葉斯定理就是這種關系的陳述 朴素貝葉斯:朴素貝葉斯 ...
朴素貝葉斯算法簡單高效,在處理分類問題上,是應該首先考慮的方法之一。 1、准備知識 貝葉斯分類是一類分類算法的總稱,這類算法均以貝葉斯定理為基礎,故統稱為貝葉斯分類。 這個定理解決了現實生活里經常遇到的問題:已知某條件概率,如何得到兩個事件交換后的概率,也就是在已知P(A|B)的情況下 ...
1、朴素貝葉斯算法介紹 一個待分類項x=(a,b,c...),判斷x屬於y1,y2,y3...類別中的哪一類。 貝葉斯公式: 算法定義如下: (1)、設x={a1, a2, a3, ...}為一個待分類項,而a1, a2, a3...分別為x的特征 (2)、有類別集合C={y1 ...
葉斯卻是生成方法,這種算法簡單,也易於實現。 1.基本概念 朴素貝葉斯:貝葉斯分類是一類分類算法的 ...