一.簡介 KMeans 算法的基本思想是初始隨機給定K個簇中心,按照最鄰近原則把分類樣本點分到各個簇。然后按平均法重新計算各個簇的質心,從而確定新的簇心。一直迭代,直到簇心的移動距離小於某個給定的值。 二.步驟 1.為待聚類的點尋找聚類中心。 2.計算每個點到聚類中心的距離 ...
.什么是MLBaseMLBase是Spark生態圈的一部分,專注於機器學習,包含三個組件:MLlib MLI ML Optimizer。 ML Optimizer: This layer aims to automating the task of ML pipeline construction. The optimizer solves a search problem over featu ...
2014-10-19 17:48 0 7273 推薦指數:
一.簡介 KMeans 算法的基本思想是初始隨機給定K個簇中心,按照最鄰近原則把分類樣本點分到各個簇。然后按平均法重新計算各個簇的質心,從而確定新的簇心。一直迭代,直到簇心的移動距離小於某個給定的值。 二.步驟 1.為待聚類的點尋找聚類中心。 2.計算每個點到聚類中心的距離 ...
1、K-Means原理 K-Means算法的基本思想很簡單,對於給定的樣本集,按照樣本之間的距離大小,將樣本集划分為K個簇。讓簇內的點盡量緊密的連在一起,而讓簇間的距離盡量的大。 如果用數據表達式表示,假設簇划分為(C1,C2,...Ck),則我們的目標是最小化平方誤差E: \[E ...
背景與原理: 聚類問題與分類問題有一定的區別,分類問題是對每個訓練數據,我給定了類別的標簽,現在想要訓練一個模型使得對於測試數據能輸出正確的類別標簽,更多見於監督學習;而聚類問題則是我們給出了一組數據,我們並沒有預先的標簽,而是由機器考察這些數據之間的相似性,將相似的數據聚為一類,是無監督學習 ...
本章導讀 機器學習(machine learning, ML)是一門涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多領域的交叉學科。ML專注於研究計算機模擬或實現人類的學習行為,以獲取新知識、新技能,並重組已學習的知識結構使之不斷改善自身。 MLlib是Spark提供的可擴展的機器學習庫 ...
本文始發於個人公眾號:TechFlow,原創不易,求個關注 今天是機器學習專題的第12篇文章,我們一起來看下Kmeans聚類算法。 在上一篇文章當中我們討論了KNN算法,KNN算法非常形象,通過距離公式找到最近的K個鄰居,通過鄰居的結果來推測當前的結果。今天我們要來看的算法同樣 ...
import org.apache.spark.{SparkContext, SparkConf} import org.apache.spark.mllib.clustering.{KMeans, KMeansModel} import ...
這個算法中文名為k均值聚類算法,首先我們在二維的特殊條件下討論其實現的過程,方便大家理解。 第一步.隨機生成質心 由於這是一個無監督學習的算法,因此我們首先在一個二維的坐標軸下隨機給定一堆點,並隨即給定兩個質心,我們這個算法的目的就是將這一堆點根據它們自身的坐標特征分為兩類,因此選取了兩個質心 ...