原文:機器學習算法中的偏差-方差權衡(Bias-Variance Tradeoff)

簡單的以下面曲線擬合例子來講: 直線擬合后,相比原來的點偏差最大,最后一個圖完全擬合了數據點偏差最小 但是拿第一個直線模型去預測未知數據,可能會相比最后一個模型更准確,因為最后一個模型過擬合了,即第一個模型的方差比最后一個模型小。一般而言高偏差意味着欠擬合,高方差意味着過擬合。他們之間有如下的關系: 本文地址 請參考一下三篇文章: 機器學習中的數學 線性回歸,偏差 方差權衡 Bias Varian ...

2014-05-06 21:43 2 10751 推薦指數:

查看詳情

偏差-方差均衡(Bias-Variance Tradeoff

眾所周知,對於線性回歸,我們把目標方程式寫成:。 (其中,f(x)是自變量x和因變量y之間的關系方程式,表示由噪音造成的誤差項,這個誤差是無法消除的) 對y的估計寫成:。 就是對自變 ...

Thu Mar 28 17:32:00 CST 2019 0 951
機器學習偏差(bias)和方差(variance)

轉發:http://blog.csdn.net/mingtian715/article/details/53789487請移步原文 內容參見stanford課程《機器學習》 對於已建立的某一機器學習模型來說,不論是對訓練數據欠擬合或是過擬合都不是我們想要的,因此應該有一種合理 ...

Thu Jan 04 04:40:00 CST 2018 0 2507
偏差(Bias)和方差(Variance)——機器學習的模型選擇

模型性能的度量 在監督學習,已知樣本 ,要求擬合出一個模型(函數),其預測值與樣本實際值的誤差最小。 考慮到樣本數據其實是采樣,並不是真實值本身,假設真實模型(函數)是,則采樣值,其中代表噪音,其均值為0,方差為。 擬合函數的主要目的是希望它能對新的樣本進行預測 ...

Wed Jul 29 21:48:00 CST 2020 0 642
機器學習總結-biasvariance tradeoff

biasvariance tradeoff 通過機器學習,我們可以從歷史數據學到一個\(f\),使得對新的數據\(x\),可以利用學到的\(f\)得到輸出值\(f(x)\)。設我們不知道的真實的\(f\)為\(\overline{f}\),我們從數據中學到的\(f\)為\(f ...

Wed Jan 04 18:30:00 CST 2017 0 4301
偏差方差以及偏差方差權衡(Bias Variance Trade off)

當我們在機器學習領域進行模型訓練時,出現的誤差是如何分類的? 我們首先來看一下,什么叫偏差(Bias),什么叫方差(Variance): 這是一張常見的靶心圖 可以看左下角的這一張圖,如果我們的目標是打靶子的話,我們所有的點全都完全的偏離了這個中心的位置,那么這種情況就叫做偏差 再看 ...

Mon Aug 19 20:06:00 CST 2019 0 462
模型的偏差bias以及方差variance

1. 模型的偏差以及方差: 模型的偏差:是一個相對來說簡單的概念:訓練出來的模型在訓練集上的准確度。 模型的方差:模型是隨機變量。設樣本容量為n的訓練集為隨機變量的集合(X1, X2, ..., Xn),那么模型是以這些隨機變量為輸入的隨機變量函數(其本身仍然是隨機變量):F(X1, X2 ...

Mon Aug 20 04:27:00 CST 2018 0 3685
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM