參考 在pytorch中計算KLDiv loss 注意reduction='batchmean',不然loss不僅會在batch維度上取平均,還會在概率分布的維度上取平均。具體見官方文檔 ...
KL距離,是Kullback Leibler差異 Kullback Leibler Divergence 的簡稱,也叫做相對熵 Relative Entropy 。它衡量的是相同事件空間里的兩個概率分布的差異情況。其物理意義是:在相同事件空間里,概率分布P x 對應的每個事件,若用概率分布 Q x 編碼時,平均每個基本事件 符號 編碼長度增加了多少比特。我們用D P Q 表示KL距離,計算公式如下 ...
2014-03-24 11:29 1 30862 推薦指數:
參考 在pytorch中計算KLDiv loss 注意reduction='batchmean',不然loss不僅會在batch維度上取平均,還會在概率分布的維度上取平均。具體見官方文檔 ...
KL 散度又叫 相對熵,是衡量 兩個概率分布 匹配程度的指標,KL 散度越大,分布差異越大,匹配度越低 計算公式如下 或者 其中 p是 目標分布,或者叫被匹配的分布,或者叫模板分布,q 是去匹配的分布; 試想,p 是真實值,q 是預測值,豈不是 個 loss ...
1. 概述 在信息論中,相對熵等價於兩個概率分布信息熵的差值,若其中一個概率分布為真實分布,另一個為理論(擬合)分布,則此時相對熵等於交叉熵與真實分布信息熵之差,表示使用理論分布擬合真實分布時所產生的信息損耗。 \[D_{K L}(p \| q)=\sum_{i=1}^{N}-p ...
...
交叉熵可在神經網絡(機器學習)中作為損失函數,p表示真實標記的分布,q則為訓練后的模型的預測標記分布,交叉熵損失函數可以衡量真實分布p與當前訓練得到的概率分布q有多么大的差異。 相對熵(relative entropy)就是KL散度(Kullback–Leibler ...
相對熵(relative entropy)就是KL散度(Kullback–Leibler divergence),用於衡量兩個概率分布之間的差異。 一句話總結的話:KL散度可以被用於計算代價,而在特定情況下最小化KL散度等價於最小化交叉熵。而交叉熵的運算更簡單,所以用交叉熵來當做代價 ...
相對熵(relative entropy)又稱為KL散度(Kullback–Leibler divergence,簡稱KLD),信息散度(information divergence),信息增益(information gain)。 KL散度是兩個概率分布P和Q差別的非對稱性的度量 ...
自信息 自信息I表示概率空間中的單一事件或離散隨機變量的值相關的信息量的量度。它用信息的單位表示,例如bit、nat或是hart,使用哪個單位取決於在計算中使用的對數的底。如下圖: ...