關聯分析又稱關聯挖掘,就是在交易數據、關系數據或其他信息載體中,查找存在於項目集合或對象集合之間的頻繁模式、關聯、相關性或因果結構。關聯分析的一個典型例子是購物籃分析。通過發現顧客放入購物籃中不同 ...
FP Growth算法 FP Growth 頻繁模式增長 算法是韓家煒老師在 年提出的關聯分析算法,它采取如下分治策略:將提供頻繁項集的數據庫壓縮到一棵頻繁模式樹 FP Tree ,但仍保留項集關聯信息 該算法和Apriori算法最大的不同有兩點:第一,不產生候選集,第二,只需要兩次遍歷數據庫,大大提高了效率。 算法偽代碼 算法:FP 增長。使用FP 樹,通過模式段增長,挖掘頻繁模式。 輸入:事務 ...
2013-09-12 14:20 1 20065 推薦指數:
關聯分析又稱關聯挖掘,就是在交易數據、關系數據或其他信息載體中,查找存在於項目集合或對象集合之間的頻繁模式、關聯、相關性或因果結構。關聯分析的一個典型例子是購物籃分析。通過發現顧客放入購物籃中不同 ...
目錄 1. 關聯分析 2. Apriori原理 3. 使用Apriori算法來發現頻繁集 4. 使用FP-growth算法來高效發現頻繁項集 5. 示例:從新聞網站點擊流中挖掘新聞報道 擴展閱讀 系列文章:《機器學習實戰》學習筆記 最近 ...
最近公司項目上用到頻繁項發現算法,於是就用java實現了一個fp-growth算法實現。 環境說明 版本說明 備注 操作系統 debian 9 無 jdk ...
Apriori算法 一、關聯分析 關聯分析是在大規模數據集中尋找有趣關系的任務,有兩種形式:頻繁項集(frequent item sets)和關聯規則(association rules)。頻繁項集是經常出現在一塊兒的物品的集合,關聯規則暗示兩種物品之間可能存在很強的關系。 1、一個項 ...
FP-growth算法。 和Apriori算法相比,FP-growth算法只需要對數據庫進行兩次遍歷,從而高效 ...
本文參考韓家煒《數據挖掘-概念與技術》一書第六章,前提條件要理解 apriori算法。 另外一篇寫得較好的文章在此推薦: http://hi.baidu.com/nefzpohtpndhovr/item/9d5c371ba2dbdc0ed1d66dca 0.實驗數據集 ...
第十二章 使用FP-growth算法高效的發現頻繁項集 一.導語 FP-growth算法是用於發現頻繁項集的算法,它不能夠用於發現關聯規則。FP-growth算法的特殊之處在於它是通過構建一棵Fp樹,然后從FP樹上發現頻繁項集。 FP-growth算法它比Apriori算法的速度更快 ...
系列文章:《機器學習實戰》學習筆記 最近看了《機器學習實戰》中的第11章(使用Apriori算法進行關聯分析)和第12章(使用FP-growth算法來高效發現頻繁項集)。正如章節標題所示,這兩章講了無監督機器學習方法中的關聯分析問題。關聯分析可以用於回答"哪些商品經常被同時購買?"之類的問題 ...