原文:http://blog.csdn.net/zhongkejingwang/article/details/42264479 什么是PCA? 在數據挖掘或者圖像處理等領域經常會用到主成分分析,這樣做的好處是使要分析的數據的維度降低了,但是數據的主要信息還能保留下來,並且,這些變換后 ...
數學推導 根據上講的思想,我們可以用下圖來進行數學上的推導. PCA的步驟 對原始數據進行標准化處理:對該指標變量進行標准化, 計算相關系數矩陣 協方差矩陣 計算相關系數矩陣的特征值和特征向量,得到新的指標標量。 計算特征值的信息貢獻率和累積貢獻率,按一定規則選擇主成分 以主成分的貢獻率為權重,構建主成分綜合評價模型,計算綜合評價值和排名 應用實例 我國各地區普通高等教育發展綜合評價 案例背景不 ...
2013-07-28 23:11 0 3837 推薦指數:
原文:http://blog.csdn.net/zhongkejingwang/article/details/42264479 什么是PCA? 在數據挖掘或者圖像處理等領域經常會用到主成分分析,這樣做的好處是使要分析的數據的維度降低了,但是數據的主要信息還能保留下來,並且,這些變換后 ...
原文地址:https://blog.csdn.net/zhongkejingwang/article/details/42264479 什么是PCA? 在數據挖掘或者圖像處理等領域經常會用到主成分分析,這樣做的好處是使要分析的數據的維度降低了,但是數據的主要信息還能保留下來,並且,這些變換 ...
本博客根據 百面機器學習,算法工程師帶你去面試 一書總結歸納,公式都是出自該書. 本博客僅為個人總結學習,非商業用途,侵刪. 網址 http://www.ptpress.com.cn 目錄: PCA最大方差理論 PCA最小平方誤差理論 在機器學習中, 數據通 ...
PCA(Principal Component Analysis)主成分分析法的數學原理推導1、主成分分析法PCA的特點與作用如下:(1)是一種非監督學習的機器學習算法(2)主要用於數據的降維(3)通過降維,可以發現人類更加方便理解的特征(4)其他的應用:去燥;可視化等2、主成分分析法的數學原理 ...
PCA(Principal Components Analysis)主成分分析是一個簡單的機器學習算法,利用正交變換把由線性相關變量表示的觀測數據轉換為由少量線性無關比變量表示的數據,實現降維的同時盡量減少精度的損失,線性無關的變量稱為主成分。大致流程如下: 首先對給定數據集(數據是向量 ...
基本概念 主成分分析(Principal Component Analysis, PCA)是研究如何將多指標問題轉化為較少的綜合指標的一種重要的統計方法,它能將高維空間的問題轉化到低維空間去處理,使問題變得比較簡單、直觀,而且這些較少的綜合指標之間互不相關,又能提供原有指標的絕大部分 ...
一.定義 主成分分析(principal components analysis)是一種無監督的降維算法,一般在應用其他算法前使用,廣泛應用於數據預處理中。其在保證損失少量信息的前提下,把多個指標轉化為幾個綜合指標的多元統計方法。這樣可達到簡化數據結構,提高分信息效率的目的。 通常 ...
主成分分析-PCA 1. 數據的降維 高維數據 除了圖片、文本數據,我們在實際工作中也會面臨更多高維的數據。比如在評分卡模型構建過程中,我們通常會試着衍生出很多的特征,最后就得到上千維、甚至上萬維特征; 在廣告點擊率預測應用中,擁有幾個 億特征也是常見的事情; 在腦科學 ...