本文主要是學習下Linear Decoder已經在大圖片中經常采用的技術convolution和pooling,分別參考網頁http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial中對應的章節部分 ...
前言: 本次實驗是練習convolution和pooling的使用,更深一層的理解怎樣對大的圖片采用convolution得到每個特征的輸出結果,然后采用pooling方法對這些結果進行計算,使之具有平移不變等特性。實驗參考的是斯坦福網頁教程:Exercise:Convolution and Pooling。也可以參考前面的博客:Deep learning:十七 Linear Decoders, ...
2013-04-09 12:38 56 33334 推薦指數:
本文主要是學習下Linear Decoder已經在大圖片中經常采用的技術convolution和pooling,分別參考網頁http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial中對應的章節部分 ...
圖像大小與參數個數: 前面幾章都是針對小圖像塊處理的,這一章則是針對大圖像進行處理的。兩者在這的區別還是很明顯的,小圖像(如8*8,MINIST的28*28)可以采用全連接的方式(即輸入層和隱含層直 ...
前言: 本次是練習2個隱含層的網絡的訓練方法,每個網絡層都是用的sparse autoencoder思想,利用兩個隱含層的網絡來提取出輸入數據的特征。本次實驗驗要完成的任務是對MINST進行手寫數字識別,實驗內容及步驟參考網頁教程Exercise: Implement deep ...
前言 理論知識:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 實驗環境:win7, matlab2015b,16G內存,2T機械硬盤 實驗內容:Exercise:Convolution ...
前言: 本節是練習Linear decoder的應用,關於Linear decoder的相關知識介紹請參考:Deep learning:十七(Linear Decoders,Convolution和Pooling),實驗步驟參考Exercise: Implement deep ...
前言 本節主要是練習下斯坦福DL網絡教程UFLDL關於Sparse coding那一部分,具體的網頁教程參考:Exercise:Sparse Coding。該實驗的主要內容是從2w個自然圖像的patches中分別采用sparse coding和拓撲的sparse coding方法 ...
功能簡介 PushBackReader允許將字符推回到流的字符流 reader PushBackReader 是一個 ...
在前面的logistic regression博文Deep learning:四(logistic regression練習) 中,我們知道logistic regression很適合做一些非線性方面的分類問題,不過它只適合處理二分類的問題,且在給出分類結果時還會給出結果的概率 ...