梯度下降法先隨機給出參數的一組值,然后更新參數,使每次更新后的結構都能夠讓損失函數變小,最終達到最小即可。在梯度下降法中,目標函數其實可以看做是參數的函數,因為給出了樣本輸入和輸出值后,目標函數就只剩下參數部分了,這時可以把參數看做是自變量,則目標函數變成參數的函數了。梯度下降每次都是更新每個參數 ...
一 梯度gradient http: zh.wikipedia.org wiki E A AF E BA A 在標量場f中的一點處存在一個矢量G,該矢量方向為f在該點處變化率最大的方向,其模也等於這個最大變化率的數值,則矢量G稱為標量場f的梯度。 在向量微積分中,標量場的梯度是一個向量場。 標量場中某一點上的梯度指向標量場增長最快的方向,梯度的長度是這個最大的變化率。 更嚴格的說,從歐氏空間Rn到 ...
2012-12-13 22:35 1 6572 推薦指數:
梯度下降法先隨機給出參數的一組值,然后更新參數,使每次更新后的結構都能夠讓損失函數變小,最終達到最小即可。在梯度下降法中,目標函數其實可以看做是參數的函數,因為給出了樣本輸入和輸出值后,目標函數就只剩下參數部分了,這時可以把參數看做是自變量,則目標函數變成參數的函數了。梯度下降每次都是更新每個參數 ...
轉載請注明出處,樓燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 這幾種方法呢都是在求最優解中經常出現的方法,主要是應用迭代的思想來逼近。在梯度下降算法中,都是圍繞以下這個式子展開: \[\frac {\partial ...
1. 梯度 在微積分里面,對多元函數的參數求∂偏導數,把求得的各個參數的偏導數以向量的形式寫出來,就是梯度。比如函數f(x,y), 分別對x,y求偏導數,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,簡稱grad f(x,y)或者▽f(x,y)。對於在點(x0,y0)的具體梯度向量 ...
(1)梯度下降法 在迭代問題中,每一次更新w的值,更新的增量為ηv,其中η表示的是步長,v表示的是方向 要尋找目標函數曲線的波谷,采用貪心法:想象一個小人站在半山腰,他朝哪個方向跨一步,可以使他距離谷底更近(位置更低),就朝這個方向前進。這個方向可以通過微分得到。選擇足夠小的一段曲線 ...
理解隨機梯度下降,首先要知道梯度下降法,故先介紹梯度下降法: 梯度下降法 大多數機器學習或者深度學習算法都涉及某種形式的優化。 優化指的是改變 以最小化或最大化某個函數 的任務。 我們通常以最小化 指代大多數最優化問題。 最大化可經由最小化算法最小化 來實現 ...
在求解機器學習算法的模型參數,即無約束優化問題時,梯度下降(Gradient Descent)是最常采用的方法之一,另一種常用的方法是最小二乘法。這里就對梯度下降法做一個完整的總結。 1. 梯度 在微積分里面,對多元函數的參數求∂偏導數,把求得的各個參數的偏導數以向量的形式寫出來 ...
隨機梯度下降: 我們用X1,X2..Xn 去描述feature里面的分量,比如x1=房間的面積,x2=房間的朝向,等等,我們可以做出一個估計函數: θ在這兒稱為參數,在這兒的意思是調整feature中每個分量的影響力,就是到底是房屋的面積更重要還是房屋的地段更重要。為了如 ...
1. 損失函數 在線性回歸分析中,假設我們的線性回歸模型為: 樣本對應的正確數值為: 現在假設判別函數的系數都找出來了,那么通過判別函數G(x),我們可以預測是樣本x對的值為。那這個跟 ...