梯度下降(GD)是最小化風險函數、損失函數的一種常用方法,隨機梯度下降和批量梯度下降是兩種迭代求解思路,下面從公式和實現的角度對兩者進行分析,如有哪個方面寫的不對,希望網友糾正。 下面的h(x)是要 ...
一 從Multinomial Logistic模型說起 Multinomial Logistic 令為維輸入向量 為輸出label 一共k類 為模型參數向量 Multinomial Logistic模型是指下面這種形式: 其中: 例如:時,輸出label為 和 ,有: Maximum Likelihood Estimate and Maximum a Posteriori Estimate Max ...
2012-02-24 17:13 12 15219 推薦指數:
梯度下降(GD)是最小化風險函數、損失函數的一種常用方法,隨機梯度下降和批量梯度下降是兩種迭代求解思路,下面從公式和實現的角度對兩者進行分析,如有哪個方面寫的不對,希望網友糾正。 下面的h(x)是要 ...
要判斷Stochastic Gradient Descent是否收斂,可以像Batch Gradient Descent一樣打印出iteration的次數和Cost的函數關系圖,然后判斷曲線是否呈現下降且區域某一個下限值的狀態。由於訓練樣本m值很大,而對於每個樣本,都會更新一次θ向量(權重向量 ...
Mahout學習算法訓練模型 mahout提供了許多分類算法,但許多被設計來處理非常大的數據集,因此可能會有點麻煩。另一方面,有些很容易上手,因為,雖然依然可擴展性,它們具有低 ...
轉載請注明出處:http://www.cnblogs.com/Peyton-Li/ 在求解機器學習算法的優化問題時,梯度下降是經常采用的方法之一。 梯度下降不一定能夠找到全局 ...
梯度下降(Gradient descent) 在有監督學習中,我們通常會構造一個損失函數來衡量實際輸出和訓練標簽間的差異。通過不斷更新參數,來使損失函數的值盡可能的小。梯度下降就是用來計算如何更新參數使得損失函數的值達到最小值(可能是局部最小或者全局最小)。 梯度下降計算流程 假設 ...
在求解機器學習算法的模型參數,即無約束優化問題時,梯度下降(Gradient Descent)是最常采用的方法之一,另一種常用的方法是最小二乘法。這里就對梯度下降法做一個完整的總結。 1. 梯度 在微積分里面,對多元函數的參數求∂偏導數,把求得的各個參數的偏導數以向量的形式 ...
曾為培訓講師,由於涉及公司版權問題,現文章內容全部重寫,地址為https://www.cnblogs.com/nickchen121/p/11686958.html。 更新、更全的Python相關更新 ...
簡述 梯度下降法又被稱為最速下降法(Steepest descend method),其理論基礎是梯度的概念。梯度與方向導數的關系為:梯度的方向與取得最大方向導數值的方向一致,而梯度的模就是函數在該點 ...