部分bankloan數據如下:
1.利用神經網絡模型預測
import pandas as pd import numpy as np from keras.models import Sequential from keras.layers import Dense,Dropout # 參數初始化 inputfile = r'C:\Users\22977\Desktop\Study\pythonData\data\data\bankloan.xls' data = pd.read_excel(inputfile) # 導入數據 x = data.iloc[:,:8] y = data.iloc[:,8] model = Sequential() model.add(Dense(64,input_dim=8,activation='relu')) # Drop防止過擬合的數據處理方式 model.add(Dropout(0.5)) model.add(Dense(64,activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1,activation='sigmoid')) # 編譯模型,定義損失函數,優化函數,績效評估函數 model.compile(loss='mean_squared_error',optimizer='rmsprop',metrics=['accuracy']) # 導入數據進行訓練 model.fit(x,y,epochs=100,batch_size=128) # 模型評估 loss,accuracy = model.evaluate(x,y,batch_size=128) print("loss:{0},accuracy:{1}".format(loss,accuracy)) yp = model.predict(x) # 分類預測 yp=np.argmax(yp,axis=1) def cm_plot(y, yp): from sklearn.metrics import confusion_matrix #導入混淆矩陣函數 cm = confusion_matrix(y, yp) #混淆矩陣 import matplotlib.pyplot as plt #導入作圖庫 plt.matshow(cm, cmap=plt.cm.Greens) #畫混淆矩陣圖,配色風格使用cm.Greens,更多風格請參考官網。 plt.colorbar() #顏色標簽 for x in range(len(cm)): #數據標簽 for y in range(len(cm)): plt.annotate(cm[x,y], xy=(x, y), horizontalalignment='center', verticalalignment='center') plt.ylabel('True label') #坐標軸標簽 plt.xlabel('Predicted label') #坐標軸標簽 return plt cm_plot(y,yp).show() # 顯示混淆矩陣可視化結果
結果如下:
混淆矩陣如下:
2.利用SVM預測
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn import svm from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix #參數初始化 filename = r'C:\Users\22977\Desktop\Study\pythonData\data\data\bankloan.xls' data = pd.read_excel(filename) x = data.iloc[:,:8] y = data.iloc[:,8] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=100) svm_clf = svm.SVC() svm_clf.fit(x_train, y_train) #svm得分 yp = svm_clf.predict(x) score = accuracy_score(y, yp) print("SVM得分:",score) #混淆矩陣 plt.title('SVM') cm = confusion_matrix(y, yp) heatmap = sns.heatmap(cm, annot=True, fmt='d') heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right') heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right') plt.ylabel("True label") plt.xlabel("Predict label")
結果如下:
混淆矩陣如下: