各常用分類算法的優缺點總結:DT/ANN/KNN/SVM/GA/Bayes/Adaboosting/Rocchio


1決策樹(Decision Trees)的優缺點

決策樹的優點:

一、 決策樹易於理解和解釋.人們在通過解釋后都有能力去理解決策樹所表達的意義。

二、 對於決策樹,數據的准備往往是簡單或者是不必要的.其他的技術往往要求先把數據一般化,比如去掉多余的或者空白的屬性。

三、 能夠同時處理數據型和常規型屬性。其他的技術往往要求數據屬性的單一。

四、 決策樹是一個白盒模型。如果給定一個觀察的模型,那么根據所產生的決策樹很容易推出相應的邏輯表達式。

五、 易於通過靜態測試來對模型進行評測。表示有可能測量該模型的可信度。

六、 在相對短的時間內能夠對大型數據源做出可行且效果良好的結果。

七、 可以對有許多屬性的數據集構造決策樹。

八、 決策樹可很好地擴展到大型數據庫中,同時它的大小獨立於數據庫的大小。


決策樹的缺點:

一、 對於那些各類別樣本數量不一致的數據,在決策樹當中,信息增益的結果偏向於那些具有更多數值的特征。

二、 決策樹處理缺失數據時的困難。

三、 過度擬合問題的出現。

四、 忽略數據集中屬性之間的相關性。



2 人工神經網絡的優缺點

人工神經網絡的優點:

一、分類的准確度高,

二、並行分布處理能力強,

三、分布存儲及學習能力強,

四、對噪聲神經有較強的魯棒性和容錯能力,

五、能充分逼近復雜的非線性關系,

六、具備聯想記憶的功能等。

 

人工神經網絡的缺點:

一、神經網絡需要大量的參數,如網絡拓撲結構、權值和閾值的初始值;

二、不能觀察之間的學習過程,輸出結果難以解釋,會影響到結果的可信度和可接受程度;

三、學習時間過長,甚至可能達不到學習的目的。




3 遺傳算法的優缺點

遺傳算法的優點:

一、 與問題領域無關切快速隨機的搜索能力。

二、 搜索從群體出發,具有潛在的並行性,可以進行多個個體的同時比較,魯棒性好。

三、 搜索使用評價函數啟發,過程簡單。

四、 使用概率機制進行迭代,具有隨機性。

五、 具有可擴展性,容易與其他算法結合。


遺傳算法的缺點:

一、 遺傳算法的編程實現比較復雜,首先需要對問題進行編碼,找到最優解之后還需要對問題進行解碼,

二、 另外三個算子的實現也有許多參數,如交叉率和變異率,並且這些參數的選擇嚴重影響解的品質,而目前這些參數的選擇大部分是依靠經驗.沒有能夠及時利用網絡的反饋信息,故算法的搜索速度比較慢,要得要較精確的解需要較多的訓練時間。

三、 算法對初始種群的選擇有一定的依賴性,能夠結合一些啟發算法進行改進。



4 KNN算法(K-Nearest Neighbour) 的優缺點

KNN算法的優點:

一、 簡單、有效。

二、 重新訓練的代價較低(類別體系的變化和訓練集的變化,在Web環境和電子商務應用中是很常見的)。

三、 計算時間和空間線性於訓練集的規模(在一些場合不算太大)。

四、 由於KNN方法主要靠周圍有限的鄰近的樣本,而不是靠判別類域的方法來確定所屬類別的,因此對於類域的交叉或重疊較多的待分樣本集來說,KNN方法較其他方法更為適合。

五、 該算法比較適用於樣本容量比較大的類域的自動分類,而那些樣本容量較小的類域采用這種算法比較容易產生誤分。


KNN算法缺點:

一、 KNN算法是懶散學習方法(lazy learning,基本上不學習),一些積極學習的算法要快很多。

二、 類別評分不是規格化的(不像概率評分)。

三、 輸出的可解釋性不強,例如決策樹的可解釋性較強。

四、 該算法在分類時有個主要的不足是,當樣本不平衡時,如一個類的樣本容量很大,而其他類樣本容量很小時,有可能導致當輸入一個新樣本時,該樣本的K個鄰居中大容量類的樣本占多數。該算法只計算“最近的”鄰居樣本,某一類的樣本數量很大,那么或者這類樣本並不接近目標樣本,或者這類樣本很靠近目標樣本。無論怎樣,數量並不能影響運行結果。可以采用權值的方法(和該樣本距離小的鄰居權值大)來改進。

五、 計算量較大。目前常用的解決方法是事先對已知樣本點進行剪輯,事先去除對分類作用不大的樣本。




5 支持向量機(SVM)的優缺點

SVM的優點:

一、 可以解決小樣本情況下的機器學習問題。

二、 可以提高泛化性能。

三、 可以解決高維問題。

四、 可以解決非線性問題。

五、 可以避免神經網絡結構選擇和局部極小點問題。


SVM的缺點:

一、 對缺失數據敏感。

二、 對非線性問題沒有通用解決方案,必須謹慎選擇Kernelfunction來處理。



6 朴素貝葉斯的優缺點

優點:

一、 朴素貝葉斯模型發源於古典數學理論,有着堅實的數學基礎,以及穩定的分類效率。

二、 NBC模型所需估計的參數很少,對缺失數據不太敏感,算法也比較簡單。


缺點:

一、 理論上,NBC模型與其他分類方法相比具有最小的誤差率。但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的(可以考慮用聚類算法先將相關性較大的屬性聚類),這給NBC模型的正確分類帶來了一定影響。在屬性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。

二、 需要知道先驗概率。

三、 分類決策存在錯誤率



7 Adaboosting方法的優點

一、 adaboost是一種有很高精度的分類器。

二、 可以使用各種方法構建子分類器,Adaboost算法提供的是框架。

三、 當使用簡單分類器時,計算出的結果是可以理解的。而且弱分類器構造極其簡單。

四、 簡單,不用做特征篩選。

五、 不用擔心overfitting。



8 Rocchio的優點

Rocchio算法的突出優點是容易實現,計算(訓練和分類)特別簡單,它通常用來實現衡量分類系統性能的基准系統,而實用的分類系統很少采用這種算法解決具體的分類問題。



9各種分類算法比較

根據這篇論文所得出的結論,

Calibrated boosted trees的性能最好,隨機森林第二,uncalibrated bagged trees第三,calibratedSVMs第四, uncalibrated neural nets第五。

性能較差的是朴素貝葉斯,決策樹。

有些算法在特定的數據集下表現較好。
 
本文來自博客園,作者: 古道輕風,轉載請注明原文鏈接: https://www.cnblogs.com/88223100/p/DT_ANN_KNN_SVM_GA_Bayes_Adaboosting_Rocchio.html


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM