基於Linux-5.10
一、RT選核流程
1. 主要調用路徑
rt_sched_class.select_task_rq //RT調度類回調 select_task_rq_rt //rt.c 前面trace_android_rvh_select_task_rq_rt()若是選到cpu就直接退出了; 若test或cpu算力不滿足時調用 find_lowest_rq //rt.c trace_android_rvh_find_lowest_rq(task, lowest_mask, ret, &cpu);
二、select_task_rq_rt 函數
1. 三種選核路徑傳參
try_to_wake_up //core.c select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); //喚醒選核路徑 wake_up_new_task //core.c select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0); //fork選核路徑 sched_exec //core.c select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); //exec選核路徑
注:傳參cpu p->wake_cpu 就是p上次運行的cpu.
static int select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) //rt.c { struct task_struct *curr; struct rq *rq; struct rq *this_cpu_rq; bool test; int target_cpu = -1; bool may_not_preempt; bool sync = !!(flags & WF_SYNC); int this_cpu; //插入HOOK trace_android_rvh_select_task_rq_rt(p, cpu, sd_flag, flags, &target_cpu); //mtk_select_task_rq_rt if (target_cpu >= 0) return target_cpu; /* For anything but wake ups, just return the task_cpu */ //也是只對喚醒和fork新任務場景調用, 另一種 SD_BALANCE_EXEC 的不走這里 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) goto out; rq = cpu_rq(cpu); //任務上次運行的cpu的rq rcu_read_lock(); curr = READ_ONCE(rq->curr); /* unlocked access */ //上次運行的cpu正在執行的任務 this_cpu = smp_processor_id(); //當前cpu this_cpu_rq = cpu_rq(this_cpu); //當前cpu的rq /* * If the current task on @p's runqueue is a softirq task, * it may run without preemption for a time that is * ill-suited for a waiting RT task. Therefore, try to * wake this RT task on another runqueue. * * Also, if the current task on @p's runqueue is an RT task, then * try to see if we can wake this RT task up on another * runqueue. Otherwise simply start this RT task * on its current runqueue. * * We want to avoid overloading runqueues. If the woken * task is a higher priority, then it will stay on this CPU * and the lower prio task should be moved to another CPU. * Even though this will probably make the lower prio task * lose its cache, we do not want to bounce a higher task * around just because it gave up its CPU, perhaps for a * lock? * * For equal prio tasks, we just let the scheduler sort it out. * * Otherwise, just let it ride on the affined RQ and the * post-schedule router will push the preempted task away * * This test is optimistic, if we get it wrong the load-balancer * will have to sort it out. * * We take into account the capacity of the CPU to ensure it fits the * requirement of the task - which is only important on heterogeneous * systems like big.LITTLE. */ //主要是判斷幾類softirq,返回假表示可搶占,curr表示任務p上次運行的cpu上當前運行的任務 may_not_preempt = task_may_not_preempt(curr, cpu); //任務p之前運行的cpu上正在運行的任務當前不可被搶占或是綁核的RT,或優先級比當前任務還高的RT test = (curr && (may_not_preempt || (unlikely(rt_task(curr)) && (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio)))); /* * Respect the sync flag as long as the task can run on this CPU. */ //若是被RT任務sync喚醒且當前cpu上正在運行RT任務的優先級比p低,且當前cpu在任務p的親和性中,就選當前cpu if (should_honor_rt_sync(this_cpu_rq, p, sync) && cpumask_test_cpu(this_cpu, p->cpus_ptr)) { cpu = this_cpu; goto out_unlock; } /* * 若p不能運行在之前運行的cpu上,或p之前運行的cpu算力不滿足p的需求了,才進行后續的選核。 * * 這個條件判斷應該很可能為假,也即p可以運行在之前運行的cpu上且之前運行的cpu滿足p的算力需求。也就是說 * 任務p很可能運行在之前運行過的cpu上,==> RT線程對算力滿足需求的之前運行過的cpu有親和性!一定概率下不 * 會走后續的選核流程。 */ if (test || !rt_task_fits_capacity(p, cpu)) { //這里是主要的選核邏輯 int target = find_lowest_rq(p); /* * Bail out if we were forcing a migration to find a better * fitting CPU but our search failed. */ /* * 若p能運行在之前運行的cpu上,且這里選出的cpu也不滿足算力需求,就選任務p之前運行的cpu, * 即使之前運行的cpu的算力也不滿足. ==> 對之前運行過的cpu有親和性 */ if (!test && target != -1 && !rt_task_fits_capacity(p, target)) goto out_unlock; /* * If cpu is non-preemptible, prefer remote cpu * even if it's running a higher-prio task. * Otherwise: Don't bother moving it if the destination CPU is * not running a lower priority task. */ /* * 選出了目標cpu且,且p不能搶占之前運行的cpu或p的優先級高於選出的cpu的rq上最高優任務的先級,就選新 * 選出的cpu,否則不賦值,還是選之前cpu。 */ if (target != -1 && (may_not_preempt || p->prio < cpu_rq(target)->rt.highest_prio.curr)) cpu = target; } out_unlock: rcu_read_unlock(); out: return cpu; }
2. 函數總結:
(1) 若是沒有選到目標cpu,就返回任務p上次運行的cpu。
(2) trace_android_rvh_select_task_rq_rt 這個hook中傳遞了上層的所有參數,vendor可以在這里定制選核邏輯。
(3) 只有喚醒場景和fork新任務場景的才走選核流程,exec執行場景的選核直接返回之前運行的cpu作為目標cpu。
(4) 若是被RT任務sync喚醒且當前cpu上正在運行RT任務的優先級比p低,且當前cpu在任務p的親和性中,就選當前cpu作為目標cpu。
(5) 若p不能運行在之前運行的cpu上,或p之前運行的cpu算力不滿足p的需求了,才會繼續選核,否則選p之前運行的cpu。說明RT任務對之前運行的cpu有一定的“親和性”。
(6) 主要的選核邏輯在 find_lowest_rq() 中。
三、find_lowest_rq 函數
1. select_task_rq_rt 傳參為待選核的任務
static int find_lowest_rq(struct task_struct *task) { struct sched_domain *sd; //static全局變量,使用之前還是空的 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); int this_cpu = smp_processor_id(); //當前正在運行的cpu int cpu = -1; int ret; /* Make sure the mask is initialized first */ if (unlikely(!lowest_mask)) return -1; //對於綁核的RT線程直接返回 if (task->nr_cpus_allowed == 1) return -1; /* No other targets possible */ /* * If we're on asym system ensure we consider the different capacities * of the CPUs when searching for the lowest_mask. */ if (static_branch_unlikely(&sched_asym_cpucapacity)) { //這個完全執行在前,lowest_mask 里面要么都是滿足算力需求的cpu,要么都是不滿足算力需求的cpu(之后大概率選之前的cpu) ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri, task, lowest_mask, rt_task_fits_capacity); } else { ret = cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask); } //走到這里時,lowest_mask中可能是滿足算力需求的cpu,也可能不是。 //這個hook中vendor可以修改候選cpu。 trace_android_rvh_find_lowest_rq(task, lowest_mask, ret, &cpu); //HOOK if (cpu >= 0) return cpu; if (!ret) return -1; /* No targets found */ cpu = task_cpu(task); //待選核rt任務之前運行的cpu /* * At this point we have built a mask of CPUs representing the * lowest priority tasks in the system. Now we want to elect * the best one based on our affinity and topology. * * We prioritize the last CPU that the task executed on since * it is most likely cache-hot in that location. */ //若p之前運行的cpu在候選cpu中,那么就選之前運行的cpu,以便利用cache-hot特性 if (cpumask_test_cpu(cpu, lowest_mask)) return cpu; /* * Otherwise, we consult the sched_domains span maps to figure * out which CPU is logically closest to our hot cache data. * 翻譯: * 否則,我們會查閱 sched_domains 中的cpu以確定哪個 CPU 在邏輯上最 * 接近我們的熱緩存數據。 */ //若當前cpu不在候選cpu中就將 this_cpu 設為-1 if (!cpumask_test_cpu(this_cpu, lowest_mask)) this_cpu = -1; /* Skip this_cpu opt if not among lowest */ rcu_read_lock(); for_each_domain(cpu, sd) { //MC-->DIE if (sd->flags & SD_WAKE_AFFINE) { //MC和DIE都有這個標志 int best_cpu; /* "this_cpu" is cheaper to preempt than a remote processor.*/ /* * 當前cpu在候選cpu中且當前cpu和p之前運行的cpu在同一個cluster內(MC的span為本cluster,DIE的span為所有cpu), * 就返回當前cpu作為目標cpu. */ if (this_cpu != -1 && cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { rcu_read_unlock(); return this_cpu; } //選候選cpu和sd->span交集的第一個cpu做為目標cpu best_cpu = cpumask_first_and(lowest_mask, sched_domain_span(sd)); if (best_cpu < nr_cpu_ids) { rcu_read_unlock(); return best_cpu; } } } //對於手機,上面肯定已經返回了,下面不會執行---------------------------------------。 rcu_read_unlock(); /* * And finally, if there were no matches within the domains * just give the caller *something* to work with from the compatible * locations. */ //若到此還沒選到任何cpu,且當前cpu在候選cpu中,就選當前cpu吧。 if (this_cpu != -1) return this_cpu; //從候選cpu中任選一個cpu作為目標cpu cpu = cpumask_any(lowest_mask); if (cpu < nr_cpu_ids) return cpu; return -1; }
2. 函數總結:
(1) 先調用 cpupri_find_fitness() 候選cpu放到 lowest_mask 中,由於此函數在選不到候選cpu的時候后舍去 fitness_fn 回調重新選擇一次。因此lowest_mask 中的候選cpu可能是都是算力滿足待選核任務p需求的,或是都不滿足p需求的。
(2) trace_android_rvh_find_lowest_rq 允許vendor廠商插入hook來更改候選cpu或指定目標cpu
(3) 確定候選cpu的 lowest_mask 后,此時就有再次擇優選擇的資本了,選擇優先級為:
a. 若p之前運行的cpu在候選cpu中,那么就選之前運行的cpu,以便利用cache-hot特性(考慮一級cache)。
b. 若當前cpu在候選cpu中,且當前cpu和p之前運行的cpu位於同一cluster,則選當前cpu(考慮二級cache)。
c. 選候選cpu和sd->span交集的第一個cpu做為目標cpu,即選任務p之前運行的cluster的一個cpu(考慮二級cache)。
d. 若當前cpu在候選cpu中,則選當前cpu。
e. 選候選cpu中的第一個cpu。
四、cpupri_find_fitness 函數
1. find_lowest_rq調用傳參(&task_rq(task)->rd->cpupri, task, lowest_mask, rt_task_fits_capacity)
cp 是全局唯一的,p 是待選核任務,lowest_mask 是剛初始化還沒使用的,fitness_fn 是回調 rt_task_fits_capacity
int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p, struct cpumask *lowest_mask, bool (*fitness_fn)(struct task_struct *p, int cpu)) //cpupri.c { int task_pri = convert_prio(p->prio); int idx, cpu; bool drop_nopreempts = task_pri <= MAX_RT_PRIO; //100 只有prio=0的最高優先級的RT任務不滿足 BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES); //102 convert_prio 轉換后最大是101 #ifdef CONFIG_RT_SOFTINT_OPTIMIZATION retry: #endif //cpupri優先級越高就越大,idx是cpupri的優先級,對應101 - p->prio for (idx = 0; idx < task_pri; idx++) { //若選到了cpu,__cpupri_find 返回1 if (!__cpupri_find(cp, p, lowest_mask, idx, drop_nopreempts)) continue; //兩個指針若有一個為NULL就直接返回 if (!lowest_mask || !fitness_fn) return 1; /* Ensure the capacity of the CPUs fit the task */ //對於 lowest_mask 中選出的cpu,剔除算力不滿足需求的cpu。 for_each_cpu(cpu, lowest_mask) { if (!fitness_fn(p, cpu)) cpumask_clear_cpu(cpu, lowest_mask); } /* * If no CPU at the current priority can fit the task * continue looking */ if (cpumask_empty(lowest_mask)) continue; //一般情況下,選到核了就從這里返回了 return 1; } /* * If we can't find any non-preemptible cpu's, retry so we can * find the lowest priority target and avoid priority inversion. */ #ifdef CONFIG_RT_SOFTINT_OPTIMIZATION //大概率不執行 if (drop_nopreempts) { drop_nopreempts = false; goto retry; } #endif /* * If we failed to find a fitting lowest_mask, kick off a new search * but without taking into account any fitness criteria this time. * * This rule favours honouring priority over fitting the task in the * correct CPU (Capacity Awareness being the only user now). * The idea is that if a higher priority task can run, then it should * run even if this ends up being on unfitting CPU. * * The cost of this trade-off is not entirely clear and will probably * be good for some workloads and bad for others. * * The main idea here is that if some CPUs were overcommitted, we try * to spread which is what the scheduler traditionally did. Sys admins * must do proper RT planning to avoid overloading the system if they * really care. */ /* * 若還是沒有選到核,走這里,其是不再提供過濾回調函數,再重新調用一次 * cpupri_find_fitness(), 這次就不考慮RT任務算力需求了,__cpupri_find() * 選到核后就直接返回了。 * TODO: 此情況下可以盡量選中核大核。 */ if (fitness_fn) return cpupri_find(cp, p, lowest_mask); return 0; } EXPORT_SYMBOL_GPL(cpupri_find_fitness); // cpupri_find_fitness傳參:(cp, p, lowest_mask) int cpupri_find(struct cpupri *cp, struct task_struct *p, struct cpumask *lowest_mask) { return cpupri_find_fitness(cp, p, lowest_mask, NULL); } /* * cpupri_find_fitness 傳參:(cp, p, lowest_mask, idx, drop_nopreempts) * drop_nopreempts 只有 p->prio=0 的最高RT優先級才會為真. * 選到了cpu返回真。 */ static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p, struct cpumask *lowest_mask, int idx, bool drop_nopreempts) { struct cpupri_vec *vec = &cp->pri_to_cpu[idx]; int skip = 0; if (!atomic_read(&(vec)->count)) skip = 1; smp_rmb(); /* Need to do the rmb for every iteration */ if (skip) return 0; if (cpumask_any_and(p->cpus_ptr, vec->mask) >= nr_cpu_ids) return 0; if (lowest_mask) { //與兩次 cpumask_and(lowest_mask, p->cpus_ptr, vec->mask); cpumask_and(lowest_mask, lowest_mask, cpu_active_mask); #ifdef CONFIG_RT_SOFTINT_OPTIMIZATION if (drop_nopreempts) drop_nopreempt_cpus(lowest_mask); #endif /* * We have to ensure that we have at least one bit * still set in the array, since the map could have * been concurrently emptied between the first and * second reads of vec->mask. If we hit this * condition, simply act as though we never hit this * priority level and continue on. */ if (cpumask_empty(lowest_mask)) return 0; } return 1; }
2. 函數總結:
(1) 會先帶着過濾回調函數 fitness_fn 選一次候選cpu,若是沒有選到,就取消過濾函數回調重新選擇一次。