【Python】上海小區數據爬取和清洗(安居客、鏈家和房天下)


一、前言:
安居客、鏈家和房天下是目前網上可以獲取小區數據較為精准的網站,之前已經發過鏈家和房天下的部分區域(僅浦東)獲取攻略。這次因為工作原因,需要獲取整個上海的所有小區數據(僅別墅和住宅),所以過年這幾天在不斷的數據分析、獲取、清洗和驗證。特此記錄一下,也把代碼和各位分享。

二、爬取思路:
不管是安居客、鏈家還是房天下,獲取數據的思路都是一致的:
1、獲取不同行政區的網址
2、獲取不同行政區下不同商圈/街鎮的網址
3、獲取不同行政區下每一個商圈/街鎮中所有小區的網址
4、根據3中獲得的網址,把需要的頁面元素爬下來

三、安居客、房天下和鏈家對比:

我把三個網站的數據都爬下來了,不過最后只用了安居客的數據

四、鏈家代碼

  1 import requests
  2 from bs4 import BeautifulSoup
  3 import re
  4 import time
  5 import traceback
  6 import math
  7 
  8 headers = {
  9     'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',
 10     'Host': 'sh.lianjia.com',
 11     'Cookie': ''
 12 }
 13 
 14 def read_Lregion_dict():
 15     '''讀取行政區域的文件,並輸出為字典'''
 16     with open('行政區url.txt', 'r') as f:
 17         large_region_list = f.readlines()
 18     large_region_dict = {}
 19     for ele in large_region_list:
 20         url, region = ele.split(' ')
 21         region = region.replace('\n', '')
 22         large_region_dict[url] = region
 23     return large_region_dict
 24 
 25 def get_jiezhen_urls():
 26     '''獲取街鎮的url'''
 27     large_region_dict = read_Lregion_dict()
 28     small_region_dict = {}
 29     for k, v in large_region_dict.items():
 30         if v != '上海周邊':
 31             url = 'https://sh.lianjia.com' + k
 32             r = requests.get(url=url, headers=headers)
 33             soup = BeautifulSoup(r.text, 'lxml')
 34             a = soup.find(name='div', attrs={'data-role': 'ershoufang'})
 35             esf_urls = a.find_all(name='a')
 36             for ele in esf_urls:
 37                 href = ele.attrs['href']
 38                 name = ele.string
 39                 if name in large_region_dict.values():
 40                     continue
 41                 else:
 42                     small_region_dict[href] = name
 43                     with open('街鎮url.txt', 'a', encoding='utf-8') as file:
 44                         file.write(','.join([v, name, href]))
 45                         file.write('\n')
 46                     print(v, name, href)
 47 
 48 def region_total(url):
 49     '''獲取該區域的小區數量'''
 50     url = r"https://sh.lianjia.com" + url + '?from=rec'
 51     r = requests.get(url=url, headers=headers)
 52     soup = BeautifulSoup(r.text, 'lxml')
 53     total_find = soup.find(name='h2', attrs={'class': 'total fl'})
 54     total_num = int(total_find.find(name='span').string.strip())
 55     return total_num
 56 
 57 def get_all_urls():
 58     '''獲取所有小區名字和鏈接'''
 59     with open('街鎮url.txt', 'r', encoding='utf-8') as f:
 60         small_region_list = f.readlines()
 61     for ele in small_region_list:
 62         l_region, s_region, url = ele.split(',')
 63         url = url.replace('\n', '')
 64         total_num = region_total(url)
 65         pages = int(math.ceil(int(total_num)/30))
 66         for i in range(1, pages+1):
 67             if i == 1:
 68                 i = ""
 69             else:
 70                 i = 'pg' + str(i)
 71             tmp_url = r"https://sh.lianjia.com" + url + i
 72             r = requests.get(url=tmp_url, headers=headers)
 73             soup = BeautifulSoup(r.text, 'lxml')
 74             for j in soup.find_all(name='div', attrs={'class': 'title'}):
 75                 community = str(j)
 76                 if '''target="_blank"''' in community:
 77                     community_list = re.search('''<a href="(.*?)" target="_blank">(.*?)</a>.*?''', community)
 78                     community_url = community_list.group(1)
 79                     community_name = community_list.group(2)
 80                     with open('小區url.txt', 'a', encoding='utf-8') as file:
 81                         file.write(','.join([l_region, s_region, community_name, community_url]))
 82                         file.write('\n')
 83             time.sleep(1)
 84         print('{}, {}總共有{}個小區,共有{}頁,已全部url爬取完成!'.format(l_region, s_region, total_num, pages))
 85 
 86 def get_communityInfo(l_region, s_region, community_name, community_url):
 87     '''獲取某個小區的信息'''
 88     r = requests.get(url=community_url, headers=headers)
 89     soup = BeautifulSoup(r.text, 'lxml')
 90     try:
 91         unitPrice = soup.find(name='span', attrs={'class': 'xiaoquUnitPrice'}).string #小區均價
 92     except:
 93         unitPrice = ''
 94     try:
 95         address = soup.find(name='div', attrs={'class': 'detailDesc'}).string #小區地址
 96         address = '"' + address + '"'
 97     except:
 98         address = ''
 99     try:
100         xiaoquInfo = soup.find_all(name='span', attrs={'class': 'xiaoquInfoContent'}) #小區信息
101         xiaoquInfo_list = [l_region, s_region]
102         community_name = '"' + community_name + '"'
103         xiaoquInfo_list.append(community_name)
104         xiaoquInfo_list.append(address)
105         xiaoquInfo_list.append(unitPrice)
106         for info in xiaoquInfo:
107             xiaoquInfo_list.append(info.string)
108         xiaoquInfo_list.pop()
109         export_communityInfo(xiaoquInfo_list)
110         time.sleep(1)
111         print('已爬取{},{}的{}信息'.format(l_region, s_region, community_name))
112     except:
113         print('{},{}的{}爬取錯誤,url是{}'.format(l_region, s_region, community_name, community_url))
114 
115 def export_communityInfo(xiaoquInfo_list):
116     '''導出小區信息'''
117     with open('上海地區小區信息.txt', 'a', encoding='utf-8') as file:
118         file.write(','.join(xiaoquInfo_list))
119         file.write('\n')
120 
121 if __name__ == "__main__":
122     # get_jiezhen_urls() #獲取街鎮的url
123     # get_all_urls() #獲取所有小區名字和鏈接
124     with open('小區url.csv', 'r') as f:
125         xiaoqu_list = f.readlines()
126         for ele in xiaoqu_list:
127             l_region, s_region, community_name, community_url = ele.split(',')
128             community_url = community_url.replace('\n', '')
129             try:
130                 get_communityInfo(l_region, s_region, community_name, community_url)
131             except:
132                 traceback.print_exc()
133                 break
View Code

 

五、房天下代碼

  1 import requests
  2 from bs4 import BeautifulSoup
  3 import pandas as pd
  4 import time
  5 import traceback
  6 
  7 headers = {
  8     'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',
  9     'cookie': ''''''
 10 }
 11 
 12 def get_true_url(old_url):
 13     '''獲得正確的url'''
 14     r = requests.get(url=old_url, headers=headers)
 15     if r'<title>跳轉...</title>' in r.text:
 16         soup = BeautifulSoup(r.text, 'lxml')
 17         new_url = soup.find(name='a', attrs={'class': 'btn-redir'}).attrs['href']
 18         return new_url
 19     return old_url
 20 
 21 def get_region_urls():
 22     '''獲得上海行政區中不同街鎮的url和名稱'''
 23     sh_dict = {'浦東': '25', '嘉定': '29', '寶山': '30', '閔行': '18', '松江': '586', '普陀': '28',
 24                '靜安': '21', '黃浦': '24', '虹口': '23', '青浦': '31', '奉賢': '32', '金山': '35',
 25                '楊浦': '26', '徐匯': '19', '長寧': '20', '崇明': '996'}
 26     for l_region_name, l_region_url in sh_dict.items():
 27         url = r"https://sh.esf.fang.com/housing/" + l_region_url + '__0_3_0_0_1_0_0_0/'
 28         true_url = get_true_url(url)
 29         r = requests.get(url=true_url, headers=headers)
 30         soup = BeautifulSoup(r.text, 'lxml')
 31         a = soup.find(name='p', attrs={'id': 'shangQuancontain', 'class': 'contain'})
 32         for i in a.find_all(name='a'):
 33             if i.string != '不限':
 34                 this_url = r"https://sh.esf.fang.com" + i.attrs['href']
 35                 this_url_list = get_region_url(this_url)
 36                 with open('上海地區街鎮url.txt', 'a', encoding='utf-8') as file:
 37                     for tmp_url in this_url_list:
 38                         file.write(','.join([l_region_name, i.string, tmp_url]))
 39                         file.write('\n')
 40         print('{}已完成'.format(l_region_name))
 41 
 42 def get_region_url(old_url):
 43     '''獲得這個區域的其它page_url'''
 44     true_url = get_true_url(old_url)
 45     r = requests.get(url=true_url, headers=headers)
 46     soup = BeautifulSoup(r.text, 'lxml')
 47     page_url = soup.find(name='div', attrs={'class': 'fanye gray6'})
 48     page_url_list = []
 49     page_url_list.append(old_url)
 50     for j in page_url.find_all(name='a'):
 51         if 'href' in j.attrs:
 52             temp_url = r'https://sh.esf.fang.com/' + j.attrs['href'][1:]
 53             if temp_url not in page_url_list:
 54                 page_url_list.append(temp_url)
 55     return page_url_list
 56 
 57 def get_xiaoqu_url(bigregion, smallregion, old_url):
 58     '''獲得某區域某一頁的小區信息和url'''
 59     true_url = get_true_url(old_url)
 60     r = requests.get(url=true_url, headers=headers)
 61     soup = BeautifulSoup(r.text, 'lxml')
 62     j = 0
 63     for i in soup.find_all(name='a', attrs={'class': 'plotTit', 'target': '_blank'}):
 64         xiaoqu_type = soup.find('a', text=i.string, attrs={'class': 'plotTit', 'target': '_blank'}).parent.find('span', attrs={'class':'plotFangType'}).string
 65         xiaoqu_name = i.string
 66         xiaoqu_url = 'https://sh.esf.fang.com/' + i.attrs['href'][1:]
 67         xiaoqu_url = xiaoqu_url.replace('.htm', '/housedetail.htm')
 68         print(bigregion, smallregion, xiaoqu_name, xiaoqu_type, xiaoqu_url)
 69         j += 1
 70         with open('上海地區小區url.txt', 'a', encoding='utf-8') as file:
 71             file.write(','.join([bigregion, smallregion, xiaoqu_name, xiaoqu_type, xiaoqu_url]))
 72             file.write('\n')
 73     time.sleep(1)
 74     print(bigregion, smallregion, old_url, '所有小區url獲取完畢,共有{}條數據'.format(j))
 75     print('-'*100)
 76 
 77 def get_all_urls(last_url=None):
 78     '''獲得所有小區的URL'''
 79     '''獲得結果后還需要清洗一下,因為有些小區跨區域,所以會有重復'''
 80     with open('上海地區街鎮url.txt', 'r', encoding='utf-8') as f:
 81         region_list = f.readlines()
 82         event_tracking = False
 83         for i in range(len(region_list)):
 84             l_region, s_region, url = region_list[i].split(',')
 85             url = url.replace('\n', '')
 86             if last_url == url:
 87                 event_tracking = True
 88             if event_tracking:
 89                 print(l_region, s_region, url)
 90                 get_xiaoqu_url(l_region, s_region, url)
 91 
 92 def get_total_informations(l_region, s_region, community_name, community_type, community_url):
 93     '''爬取某個小區的有用信息'''
 94     r = requests.get(url=community_url, headers=headers)
 95     soup = BeautifulSoup(r.text, 'lxml')
 96     informations = soup.find(name='div', attrs={'class': 'village_info base_info'})
 97     if not informations:
 98         print('{}, {}, {}, {}爬取失敗!'.format(l_region, s_region, community_name, community_url))
 99         return None
100     else:
101         all_info = [l_region, s_region, community_name, community_type]
102         for ele in ['本月均價', '小區地址', '產權描述', '環線位置', '建築年代', '建築面積', '占地面積', '房屋總數', '樓棟總數', '綠 化 率', '容 積 率', '物 業 費', '開 發 商', '物業公司']:
103             try:
104                 all_info.append(informations.find('span', text=ele).parent.find(name='p').text.strip().replace('\r', '').replace('\n', '').replace('\t', '').replace(',', ''))
105             except:
106                 try:
107                     all_info.append(informations.find('span', text=ele).parent.find(name='a').text.strip().replace('\r', '').replace('\n', '').replace('\t', '').replace(',', ''))
108                 except:
109                     all_info.append('')
110         return all_info
111 
112 def get_data(last_url=None):
113     '''主程序,爬所有小區信息'''
114     with open('上海地區小區url.txt', 'r', encoding='utf-8') as f:
115         village_list = f.readlines()
116         error_count = 0
117         if last_url == None:
118             event_tracking = True
119         else:
120             event_tracking = False
121         for i in range(len(village_list)):
122             l_region, s_region, community_name, community_type, community_url = village_list[i].split(',')
123             community_url = community_url.replace('\n', '')
124             if last_url == community_url:
125                 event_tracking = True
126             if event_tracking == True:
127                 if community_type=='住宅' or community_type=='別墅':
128                     # print(l_region, s_region, community_name, community_type,community_url)
129                     try:
130                         with open('上海小區數據.txt', 'a', encoding='utf-8') as file:
131                             back = get_total_informations(l_region, s_region, community_name, community_type, community_url)
132                             if not back:
133                                 if error_count>=2:
134                                     break
135                                 else:
136                                     error_count +=1
137                                     time.sleep(1)
138                                     continue
139                             else:
140                                 error_count = 0
141                                 file.write(','.join(back))
142                                 file.write('\n')
143                                 print('{}, {}, {}, {}爬取成功!'.format(l_region, s_region, community_name, community_type, community_url))
144                                 time.sleep(1)
145                     except:
146                         print('{}, {}, {}, {}爬取失敗!'.format(l_region, s_region, community_name, community_url))
147                         traceback.print_exc()
148                         break
149                 else:
150                     continue
151 
152 if __name__ == "__main__":
153     get_region_urls() #得上海行政區中不同街鎮的url和名稱
154     get_xiaoqu_url() #獲得某區域某一頁的小區信息和url,這里應該是遍歷,代碼不完全
155     get_data() #爬取所有小區信息
View Code

 

六、安居客代碼

 

  1 import requests
  2 from bs4 import BeautifulSoup
  3 import re
  4 import time
  5 import traceback
  6 
  7 headers = {
  8     'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',
  9     'Cookie': ''
 10 }
 11 
 12 def get_jiezhen_urls():
 13     '''獲取所有街鎮的url'''
 14     lregion_dict = {'浦東': 'pudong', '閔行': 'minhang', '松江': 'songjiang', '寶山': 'baoshan', '嘉定':'jiading',
 15                     '徐匯':'xuhui', '青浦':'qingpu', '靜安':'jingan', '普陀':'putuo', '楊浦':'yangpu',
 16                     '奉賢': 'fengxian', '黃浦':'huangpu', '虹口':'hongkou', '長寧':'changning','金山':'jinshan',
 17                     '崇明':'chongming'}
 18     for k, v in lregion_dict.items():
 19         url = 'https://shanghai.anjuke.com/community/' + v + '/'
 20         r = requests.get(url=url, headers=headers)
 21         soup = BeautifulSoup(r.text, 'lxml')
 22         a = soup.find_all('li', attrs={'class': 'region-item'})
 23         for i in range(19, len(a)):
 24             temp = a[i].find('a')
 25             with open('街鎮url.txt', 'a', encoding='utf-8') as file:
 26                 file.write(','.join([k, temp.text, temp.attrs['href']]))
 27                 file.write('\n')
 28         print('{}區域的url都爬取完畢!'.format(k))
 29         time.sleep(1)
 30 
 31 def region_total(url):
 32     '''獲取該區域的小區數量'''
 33     r = requests.get(url=url, headers=headers)
 34     soup = BeautifulSoup(r.text, 'lxml')
 35     # print(soup)
 36     total_find = soup.find(name='span', attrs={'class': 'total-info'})
 37     total_num = int(total_find.text.replace('共找到 ', '').replace(' 個小區', ''))
 38     return total_num
 39 
 40 def get_all_urls():
 41     '''獲取所有小區名字和鏈接'''
 42     with open('街鎮url.txt', 'r', encoding='utf-8') as f:
 43         small_region_list = f.readlines()
 44     for ele in small_region_list:
 45         l_region, s_region, url = ele.split(',')
 46         url = url.replace('\n', '')
 47         total_num = region_total(url)
 48         pages = int(math.ceil(int(total_num)/25))
 49         for i in range(1, pages+1):
 50             i = 'p' + str(i) + '/'
 51             tmp_url = url + i
 52             r = requests.get(url=tmp_url, headers=headers)
 53             soup = BeautifulSoup(r.text, 'lxml')
 54             a = soup.find_all('div', attrs={'class': 'li-info'})
 55             for ele in a:
 56                 xiaoqu_name = ele.find('div', attrs={'class': 'li-title'}).text.strip()
 57                 xiaoqu_address = ele.find('div', attrs={'class': 'props nowrap'}).text.split(' - ')[-1].strip()
 58                 xiaoqu_tag = ele.find_all('span', attrs={'class': 'prop-tag'})
 59                 xiaoqu_url = ele.find('span', text='小區解讀').parent.find('a').attrs['href']
 60                 xiaoqu_url = xiaoqu_url.replace('props/sale', 'view')
 61                 tag_list = []
 62                 for tag in xiaoqu_tag:
 63                     if 'display:none' in str(tag):
 64                         continue
 65                     else:
 66                         tag_list.append(tag.text)
 67                 with open('小區url.txt', 'a', encoding='utf-8') as file:
 68                     file.write('$'.join([l_region, s_region, xiaoqu_name, xiaoqu_address, str(tag_list), xiaoqu_url]))
 69                     file.write('\n')
 70             time.sleep(1)
 71         print('{}, {}總共有{}個小區,共有{}頁,已全部url爬取完成!'.format(l_region, s_region, total_num, pages))
 72 
 73 def get_communityInfo(l_region, s_region, community_name, community_address, community_tag, community_url):
 74     '''獲取某個小區的信息'''
 75     r = requests.get(url=community_url, headers=headers)
 76     soup = BeautifulSoup(r.text, 'lxml')
 77     # print(soup)
 78     if '訪問驗證-ajk' in str(soup):
 79         print('觸發反爬機制了!url是', community_url)
 80         exit()
 81     else:
 82         # print('pa蟲運行正常!')
 83         try:
 84             unitPrice = soup.find(name='span', attrs={'class': 'average'}).string #小區均價
 85         except:
 86             unitPrice = '暫無均價'
 87         xiaoquInfo = soup.find_all(name='div', attrs={'class': 'hover-inner'}) #小區信息
 88         xiaoquInfo_list = [l_region, s_region, community_name, community_address, community_tag, unitPrice]
 89         for info in xiaoquInfo:
 90             temp = info.find('div', attrs={'class': 'hover-value'})
 91             if temp:
 92                 xiaoquInfo_list.append(temp.text.replace('\n', '').strip())
 93         export_communityInfo(xiaoquInfo_list)
 94         time.sleep(0.5)
 95         print('已pa取{},{}的{}信息'.format(l_region, s_region, community_name))
 96 
 97 def export_communityInfo(xiaoquInfo_list):
 98     '''導出小區信息'''
 99     with open('上海地區小區信息.txt', 'a', encoding='utf-8') as file:
100         file.write('&'.join(xiaoquInfo_list))
101         file.write('\n')
102 
103 if __name__ == "__main__":
104     # get_jiezhen_urls() #獲取所有街鎮的url
105     # get_all_urls() #獲取所有小區名字和鏈接
106     with open('小區url.txt', 'r', encoding='utf-8') as f:
107         xiaoqu_list = f.readlines()
108         last_url = 'https://shanghai.anjuke.com/community/view/8338/'
109         stop_place = False
110         for ele in xiaoqu_list:
111             l_region, s_region, community_name, community_address, community_tag, community_url = ele.split('$')
112             community_url = community_url.replace('\n', '')
113             if community_url == last_url or last_url == '':
114                 stop_place = True
115             if stop_place:
116                 try:
117                     get_communityInfo(l_region, s_region, community_name, community_address, community_tag, community_url)
118                 except:
119                     print('{}爬取失敗,url是:{}'.format(community_name, community_url))
120                     traceback.print_exc()
121                     break
View Code

 

 

 

七、數據清洗和特征工程

獲取的數據很臟,有重復值需要剔重,有異常值需要修正(比如明顯是外環的數據被歸納為內環);需要根據業務場景,區分小區是否高檔;需要根據需要,與內部數據結合…
我這邊就舉例幾種場景,供大家參考(以安居客數據為例):

1、從標簽中判斷小區是否靠近地鐵
1 data['是否靠近地鐵'] = data['標簽'].apply(lambda x: '是' if '近地鐵' in str(x) or '號線' in str(x) else '否')
2、從標簽中判斷環線位置
 1 def huanxian_position(text):
 2     '''環線位置'''
 3     if '內環以內' in str(text): 4 return '內環以內' 5 elif '內中環之間' in str(text): 6 return '內中環之間' 7 elif '郊環以外' in str(text): 8 return '郊環以外' 9 elif '外郊環之間' in str(text): 10 return '外郊環之間' 11 elif '中外環之間' in str(text): 12 return '中外環之間' 13 else: 14 return np.nan 15 16 data['環線位置'] = data['標簽'].apply(huanxian_position)
3、糾正環線位置
 1 data_pivot = data.pivot_table(index='所屬商圈', columns='環線位置', values='名稱', aggfunc='count').reset_index()
 2 data_pivot['環線位置2'] = ''
 3 for i in range(data_pivot.shape[0]): 4 huan_dict = {} 5 huan_dict['中外環之間'] = data_pivot.iloc[i,1] 6 huan_dict['內中環之間'] = data_pivot.iloc[i,2] 7 huan_dict['內環以內'] = data_pivot.iloc[i,3] 8 huan_dict['外郊環之間'] = data_pivot.iloc[i,4] 9 huan_dict['郊環以外'] = data_pivot.iloc[i,5] 10 best_answer = '' 11 best_v = 0 12 for k,v in huan_dict.items(): 13 if v == np.nan: 14 continue 15 elif v >= best_v: 16 best_answer = k 17 else: 18 continue 19 data_pivot.iloc[i,6] = best_answer 20 21 huan_dict = {} 22 for k,v in zip(data_pivot['所屬商圈'].values, data_pivot['環線位置2'].values): 23 huan_dict[k] = v 24 25 data['環線位置'] = data['所屬商圈'].map(huan_dict)
4、根據竣工時間判斷小區年齡
1 def new_age(text):
2     '''竣工時間推導小區年齡'''
3     if str(text) != 'nan': 4 text = 2022 - int(text.split('、')[0].replace('年','')) 5 return text 6 else: 7 return np.nan 8 9 data['小區年齡'] = data['竣工時間'].apply(new_age)
5、判斷是否商務樓宇、園區等(鏈家)
1 def if_business(text):
2     '''判斷是否商務樓宇、園區等'''
3     for ele in ['商務', '園區', '大廈', '寫字樓', '廣場']: 4 if ele in text: 5 return '是' 6 else: 7 return '否' 8 9 data['是否商務樓宇等'] = data['小區名稱'].apply(if_business)
6、提取物業費上下限(鏈家)
 1 def wuyefei_down(text):
 2     '''輸出物業費下限'''
 3     if text is np.nan: 4 return np.nan 5 elif '至' not in text: 6 return text.replace('元/平米/月','') 7 else: 8 down, up = text.split('至') 9 return down.replace('元/平米/月','') 10 11 def wuyefei_up(text): 12 '''輸出物業費上限''' 13 if text is np.nan: 14 return np.nan 15 elif '至' not in text: 16 return text.replace('元/平米/月','') 17 else: 18 down, up = text.split('至') 19 return up.replace('元/平米/月','') 20 21 data['物業費下限'] = data['物業費'].apply(wuyefei_down) 22 data['物業費上限'] = data['物業費'].apply(wuyefei_up)
7、判斷小區名字是否有地址
1 def if_number(text):
2     '''判斷小區名稱里是否有數字'''
3     if bool(re.search(r'\d', text)): 4 return '是' 5 else: 6 return '否' 7 8 data['小區名稱里是否有數字'] = data['名稱'].apply(if_number)
8、匹配百度經緯度
 1 from urllib.request import urlopen, quote
 2 import json 3 import math 4 from math import radians, cos, sin, asin, sqrt 5 import requests 6 7 def getjwd_bd(address): 8 '''根據地址獲得經緯度(百度)''' 9 try: 10 url = 'http://api.map.baidu.com/geocoding/v3/?address=' 11 output = 'json' 12 ak = '******'#需填入自己申請應用后生成的ak 13 add = quote(address) #本文城市變量為中文,為防止亂碼,先用quote進行編碼 14 url2 = url+add+'&output='+output+"&ak="+ak 15 req = urlopen(url2) 16 res = req.read().decode() 17 temp = json.loads(res) 18 lng = float(temp['result']['location']['lng']) # 經度 Longitude 簡寫Lng 19 lat = float(temp['result']['location']['lat']) # 緯度 Latitude 簡寫Lat 20 return lng, lat 21 except: 22 return np.nan, np.nan 23 24 for i in tqdm(range(data.shape[0])): 25 region = data.iloc[i, 0] 26 if region=='浦東': 27 region = '上海市浦東新區' 28 else: 29 region = '上海市'+ region + '區' 30 xiaoqu_name = data.iloc[i, 2] 31 address = data.iloc[i, 3] 32 if str(data.iloc[i, 19]) !='nan': 33 continue 34 else: 35 lng1, lat1 = getjwd_bd(region+address+xiaoqu_name) 36 if 120<=lng1<=122 and 30<=lat1<=32: 37 data.iloc[i, 19] = lng1 38 data.iloc[i, 20] = lat1 39 else: 40 data.iloc[i, 19] = np.nan 41 data.iloc[i, 20] = np.nan
9、計算兩個經緯度之間的距離(用於與內部數據匹配)
 1 def get_distance(lng1,lat1,lng2,lat2):
 2     '''計算距離'''
 3     lng1, lat1, lng2, lat2 = map(radians, [float(lng1), float(lat1), float(lng2), float(lat2)])  # 經緯度轉換成弧度
 4     dlon = lng2 - lng1 5 dlat = lat2 - lat1 6 a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2 7 distance = 2 * asin(sqrt(a)) * 6371393 # 地球平均半徑,6371km 8 distance = round(distance, 0) 9 return distance 10 11 for i in tqdm(range(data.shape[0])): 12 xiaoqu_name = data.iloc[i, 2] 13 lng1 = data.iloc[i, 18] 14 lat1 = data.iloc[i, 19] 15 match_wg = data.iloc[i, 24] 16 min_distance = 9999999999 17 tmp_grid_cd = '' 18 tmp_grid_name = '' 19 # print(xiaoqu_name, lng1, lat1) 20 if str(match_wg) != 'nan': 21 print('{}已匹配,跳過'.format(xiaoqu_name)) 22 continue 23 else: 24 for j in range(grid_data.shape[0]): 25 lng2 = grid_data.iloc[j, 19] 26 lat2 = grid_data.iloc[j, 20] 27 grid_cd = grid_data.iloc[j, 0] 28 grid_name = grid_data.iloc[j, 1] 29 if str(lng2) == 'nan': 30 continue 31 else: 32 tmp_distance = get_distance(lng1, lat1, lng2, lat2) 33 # print(grid_name,tmp_distance) 34 if tmp_distance == 0: 35 print('{}精確匹配的網格是{}'.format(xiaoqu_name, grid_name)) 36 data.iloc[i, 24] = grid_cd 37 print('-'*100) 38 break 39 else: 40 if tmp_distance < min_distance: 41 min_distance = tmp_distance 42 tmp_grid_cd = grid_cd 43 tmp_grid_name = grid_name 44 # print(min_distance, tmp_grid_cd, tmp_grid_name) 45 else: 46 continue 47 else: 48 data.iloc[i, 24] = tmp_grid_cd 49 print('{}模糊匹配的網格是{}'.format(xiaoqu_name, tmp_grid_name)) 50 print(min_distance, tmp_grid_cd, tmp_grid_name) 51 print('-'*100)
10、找出區域內top10%均價的房子
 1 region_dict = data['行政區'].value_counts().to_dict()
 2 top10_list = [] 3 for k, v in region_dict.items(): 4 temp_data = data[data['行政區']==k] 5 temp_data = temp_data.sort_values(by='均價', ascending=False).reset_index() 6 temp_top10 = temp_data.iloc[:int(v*0.1), :] 7 top10_index = temp_top10['index'].to_list() 8  top10_list.extend(top10_index) 9 10 data['是否區域內均價top10%'] = '否' 11 for i in top10_list: 12 data.loc[i, '是否區域內均價top10%'] = '是'
11、判斷是否高檔小區
 1 def if_upscale(df):
 2     '''判斷是否高檔小區'''
 3     if df['物業類型'] == '別墅': 4 return '是' 5 elif df['均價'] <=30000: 6 return '否' 7 elif df['小區年齡'] <= 10 and df['環線位置'] in ('內環以內', '內中環之間', '中外環之間'): 8 return '是' 9 elif df['物業費'] >= 3: 10 return '是' 11 elif df['是否區域內均價top10%'] == '是': 12 return '是' 13 else: 14 return '否' 15 16 data['是否高檔小區'] = data.apply(if_upscale, axis=1)

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM